
E1803D All-In-One Scanner Controller

XY2-100, XY2-200,
XY2-100E, XY2-200E,

XY3-100

Users Manual

© 2016-2024 by HALaser Systems GmbH

1

Table of Contents
1 Copyright...4
2 History..7
3 Safety..9
4 Overview..10

4.1 Features..10
5 Position Within The System..11
6 Board And Connectors...12

6.1 Ethernet..12
6.1.1 Ethernet Configuration With Windows 10...13
6.1.2 Ethernet Configuration With Windows 11...14
6.1.3 Ethernet Configuration With Linux..14

6.2 USB...15
6.3 Power...15
6.4 User LEDs...16
6.5 microSD-Card..18

6.5.1 Firmware Update...27
6.6 Scanner Signals..27
6.7 Laser Signals..29
6.8 Digital Interface...31

6.8.1 Marking On-The-Fly Signals..32
6.8.2 Opto-Configuration Jumpers..34
6.8.3 Output State LEDs...34
6.8.4 Input State LEDs...34

6.9 Serial Interface...35
6.10 Extension Connectors..35

7 Stand-Alone Operation...36
7.1 Create Stand-Alone Data with BeamConstruct..36
7.2 Stand-Alone Configuration Parameters..37
7.3 Stand-Alone Control..39

8 Matrix Laser Dot Marking Mode..41
8.1 Dot Mode Configuration Parameters..41
8.2 Dot Mode Hardware Interface...42
8.3 Dot Mode Control..43

9 Multi-IO Extension Board...44
9.1 Board Connectors..44
9.2 Multi-IO Interface..44

10 Intelli-IO Extension Board..46
10.1 Board Connectors..46
10.2 Intelli-IO Interface in IO mode...46
10.3 Intelli-IO Interface in motion mode...47

11 NX-02 Extension Board...48
11.1 Board Connectors..48
11.2 NX-02 Interface..48
11.3 Analogue Input Interface..49

12 E1803dock Extension Board...50
12.1 E1803dock MOPA...50
12.2 E1803dock YLM...52
12.3 E1803dock SPI..54

12.3.1 Connector to laser..56
12.4 E1803dock CO2/YAG...57

13 E1803base Mounting Kit..60
14 Quick Start into E1803D...61
15 Command Interface...62

15.1 General Commands...62
15.2 Stand-Alone Control Commands..64
15.3 Hardware Commands..70
15.4 Mark Control Commands...71

2

16 Supported CNC G-Code Commands..79
16.1 General G-Code Characters..79
16.2 Supported “G”-codes...79
16.3 Supported “M”-codes..81
16.4 Supported “T”-codes...82

17 Programming Interfaces..83
17.1 E1803D Easy Interface Functions..83

17.1.1 General functions..84
17.1.2 Laser and scanner related functions...90
17.1.3 Digital interface functions..103
17.1.4 Serial interface functions..107
17.1.5 Intelli-IO extension functions (IO-mode)...108
17.1.6 Intelli-IO extension functions (motion mode)...109
17.1.7 PID control loop functions..114
17.1.8 Miscellaneous functions..115
17.1.9 Writing of stand-alone data...116

17.1.9.1 Example...119
17.1.10 Error Codes..120

17.2 RTC4 Compatibility Functions...120
17.3 USC1/2 Compatibility Functions (SCI interface)...124

APPENDIX A – Wiring between E1803D and IPG YLP Series Type B, B1 and B2 fiber laser.....................................126
APPENDIX B – Wiring between E1803D and JPT YDFLP series fiber laser (“MOPA”) or IPG YLP Series Type D
fiber laser or Raycus RFL PMX/PQB Series fiber laser...127
APPENDIX C – Wiring between E1803D and IPG YLP Series Type E fiber laser..128
APPENDIX D – Wiring between E1803D and IPG YLP Series Type G fiber laser...129
APPENDIX E – Wiring between E1803D and IPG YLR Series laser..130
APPENDIX F – Wiring between E1803D and IPG YLM Series laser..131
APPENDIX G – Wiring between E1803D and MaxPhotonics MFP fiber laser..132
APPENDIX H – Wiring between E1803D and SPI G4 Pulsed Fibre Laser / TRUMPF TruPulse nano series.......133
APPENDIX I – Wiring between E1803D and Raycus fiber laser...134
APPENDIX J – Wiring between E1803D and Raycus C500 Series laser..135
APPENDIX K – Wiring between E1803 and DAVI D-Series RF CO2 Laser..136
APPENDIX L – XY2-100 / XY2-200 protocol description...137
APPENDIX M – XY3-100 protocol description..138
APPENDIX N – SL2-100 protocol description...139
APPENDIX O – RL3-100 protocol description...140
APPENDIX P – IDC connector pin numbering...141
APPENDIX P – Mechanical Dimensions..142

3

1 Copyright
This document is © by HALaser Systems GmbH.

E1803D boards, their hardware and design are copyright / trademark / legal trademark of HALaser Systems
GmbH.

IPG and others are copyright / trademark / legal trademark of IPG Laser GmbH / IPG Photonics Corporation.

Scanlab, RTC4, RTC5, RTC6, SL2-100 and others are copyright / trademark / legal trademark of Scanlab AG.

SCAPS, USC1, USC2, USC3 and others are copyright / trademark / legal trademark of SCAPS GmbH.

Raylase, SP-ICE, RL3-100 and others are copyright / trademark / legal trademark of Raylase AG.

Rofin, Rofin-Sinar, Visual Laser Marker and others are copyright / trademark / legal trademark of Raylase AG.

Sunny, CSC-USB and others are copyright / trademark / legal trademark of Beijing Century Sunny Technology
CO., LTD

CTI, Cambridge Technology, Novanta and others are copyright / trademark / legal trademark of Novanta Inc.

Han’s, Han’s Laser and others are copyright / trademark / legal trademark of Han’s Laser Technology Industry
Group Co., Ltd.

All other names / trademarks are copyright / trademark / legal trademark of their respective owners.

Portions of the E1803D firmware are based on lwIP 1.4.0 (or newer):

Copyright (c) 2001, 2002 Swedish Institute of Computer Science.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Portions of the E1803D firmware are based on FatFS R0.10a (or newer):

FatFs module is an open source software to implement FAT file system to small embedded systems. This is a
free software and is opened for education, research and commercial developments under license policy of
following terms.

4

Copyright (C) 2014, ChaN, all right reserved.

• The FatFs module is a free software and there is NO WARRANTY.
• No restriction on use. You can use, modify and redistribute it for personal, non-profit or commercial

product UNDER YOUR RESPONSIBILITY.
• Redistributions of source code must retain the above copyright notice.

Portions of the E1803D firmware are based on StarterWare 2.0 (or newer):

Copyright (C) 2010 Texas Instruments Incorporated – http://www.ti.com/

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Texas Instruments Incorporated nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2008-2010 Texas Instruments Incorporated. All rights reserved.

Software License Agreement

Texas Instruments (TI) is supplying this software for use solely and exclusively on TI's microcontroller products.
The software is owned by TI and/or its suppliers, and is protected under applicable copyright laws. You may not
combine this software with "viral" open-source software in order to form a larger program.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL
NOT, UNDER ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, FOR ANY REASON WHATSOEVER.

This is part of AM1808 Sitaraware USB Library and reused from revision 6288 of the Stellaris USB Library.

Portions of the E1803D firmware are based on libzint-backend 2.0 (or newer):

libzint - the open source barcode library, Copyright (C) 2008-2017 Robin Stuart <rstuart114@gmail.com>

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

5

3. Neither the name of the project nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Motion Extension firmware bases on motion5 version 1.1 or newer*:

Copyright (c) 2018 Oxygenic, (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC, Copyright (c) 2009-2011
Simen Svale Skogsrud

motion5 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.
motion5 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

*) GPL notice: the motion extension firmware is running separately and completely independent from the main
controller firmware, they are neither linked nor compiled together with each other. The related motion5
sources, as used on motion extension, can be found at https://sourceforge.net/p/axis5/code/ci/master/tree/

6

2 History
Date Changes in document
03/2024 Added parameter and command cswaf
03/2024 Description of function E1803_uart_write() updated
02/2024 Description of AE-LED updated
10/2023 Configuration parameter u0stop added
10/2023 Voltage levels of RS232 interface specified more exact
10/2023 Windows 11 Ethernet configuration description added
07/2023 Reference to header files and programming examples added
03/2023 Behaviour of A/E LED clarified
03/2023 Numbering of pins of extension boards clarified
12/2022 Description of E1803_stop_execution() and cvers extended
12/2022 Missing description of flags E1803_PIXELMODE_ added
11/2022 Added new function E1803_get_pos()
11/2022 Default values of G-Code parameters described
10/2022 Added new stand-alone commands cspof, cfror and cpuor
10/2022 Electrical behaviour of digital IOs clarified
10/2022 New confoguration parameter busid added
10/2022 Code for d-command “Set Position Offset” corrected
06/2022 New function E1803_motion_move_abs_async()
06/2022 New commands cslp8, cslgt and cslmo added
05/2022 Description of E1803dock MOPA version 1.2 added
02/2022 Tune-flag added to invert input logic of ExtStart input
02/2022 Tune-flag now also can read hex-values with 0x prefix
02/2022 Added tune-flags to invert LP8 and MO outputs
12/2021 New configuration parameter lasergate
11/2021 Configuration parameter u0bypass added
11/2021 Tune-flag 524288 added
10/2021 Description of E1803_set_xy_correction() corrected
10/2021 E1803dock pinout description clarified
08/2021 New parameters tunereadyout and tunemarkout added
07/2021 Inappropriate language and naming removed (“master”, “slave”, ...)
07/2021 Description of HALdrive mounting possibilities added
07/2021 Added description of ctlxy command
07/2021 Wiring of JPT/MOPA laser with pulse width serial interface clarified
07/2021 Description of CSV-support in stand-alone mode added
06/2021 Added wiring scheme when no dual power supply is used
04/2021 New “d”-commands 0x18 / delay and 0x19 / Latch added
04/2021 Description of new configuration parameter “eth=2” for Ethernet interface polling added
04/2021 Description of Ethernet configuration updated for Windows 10
03/2021 Added function E1803_get_serial_number()
01/2021 Added description of new function E1803_motion_set_pulsewidth()
12/2020 Added commands “cgmtx” and “csmtx”
12/2020 Added new stand-alone function and configuration parameters “iolatch” and “iothres”
11/2020 Description of jumper configuration of digital interface extended
10/2020 Pinout of IPG YLM and SPI G4 corrected
08/2020 Description of parameter „tunexy3“ added
06/2020 XY3-100 description and pinout added
04/2020 Added description of E1803_set_scanner_mode() and introduced 200 kHz output modes
01/2020 Added description of commands „csbuf“ and „cgbuf“
01/2020 Added new stand-alone mode „idxselect“
01/2020 Added “adcfreq” configuration parameter
11/2019 Usage of digital inputs of Intelli-IO extension clarified
10/2019 Function description of E1803_set_standby2() added

7

10/2019 Added wiring scheme for MaxPhotonics fiber lasers
10/2019 Example in description of pethd-parameter corrected
07/2019 Extended description of card state flags
07/2019 Added description about how to write stand-alone data via API
05/2019 Numbering of DIn and DOut of second digital port (Intelli-IO extension) corrected
02/2019 Added description of new API commands E1803_digi_set_motf2() and

E1803_digi_set_motf_powerctl()
02/2019 Added “pethd” configuration parameter
01/2019 Added PID control loop API function description
12/2018 Added “haltedloopbuffer” configuration parameter
11/2018 Stepper motor pinout added for Intelli-IO extension
10/2018 Added commands „cscor“ and „cgcor“
10/2018 Added “haltedlooptimeout” configuration parameter
09/2018 New tune-flag added
09/2018 Added description of Intelli-IO Extension Board and related API functions
05/2018 Added description of Motion Extension Board and motion API functions
04/2018 Description of new parameters “digiinit” and “digimask” added
04/2018 Description of new tune-flags added
04/2018 Added description of command E1803_digi_pulse()
03/2018 Added description of Multi-IO Extension Board
02/2018 New “d”-command 0x45 to update firmware
02/2018 Added description of flag E1803_COMMAND_FLAG_ASYNC
01/2018 Added description for u0bits and u0parity configuration parameters
12/2017 Added description for matrix-”d”-commands 0x40 and 0x41
10/2017 Added wiring description for IPG YLM lasers
08/2017 Added description for config parameters wetout and mipout
08/2017 Description for E1803_set_sync()/E1803_get_sync() added
07/2017 Description of USB license retrieval clarified
07/2017 TrueType support in stand-alone mode
04/2017 Added description of command cscnc
04/2017 Added wiring scheme for IPG YLR lasers
03/2017 Added description of supported G-Code commands
02/2017 Images updated
01/2017 Added wiring scheme for IPG type E lasers with APD index mode
01/2017 Added “iohaltedloop” stand-alone mode
12/2016 Description of corrtable0 parameter corrected
12/2016 Initial version

8

3 Safety
The hardware described within this document is designed to control a laser scanner system. Laser radiation
may effect a person's health or may otherwise cause damage. Prior to installation and operation compliance
with all relevant safety regulations including additional hardware-controlled safety measures has to be
secured. The client shall solely be responsible to strictly comply with all applicable and relevant safety
regulations regarding installation and operation of the system at any time.

Beside of that some laser equipment can be damaged in case it is controlled with wrong signals or signals
outside a given specification. Thus it is highly recommended to check the output generated by this hardware
using e.g. an oscilloscope to avoid problems caused by wrong configurations. This should be done prior to
putting a system into operation for the first time, whenever some parameters have been changed or whenever
any kind of software update was installed.

The hardware described here is shipped without any cover and without prefabricated equipment for electric
installation. It is intended to be integrated in machines or other equipment. It is not a device for use "as is", but a
component which is intended to be used as part of a larger device, e.g. for integration in a machine with own
housing or within an electrical cabinet. Prior to operation compliance with all relevant electric /
electromagnetic safety regulations including additional hardware-controlled safety measures has to be
secured. The client shall solely be responsible to strictly comply with all applicable and relevant regulations
regarding installation and operation of the system at any time.

The hardware described here is an electrostatic sensitive device. This means it can be damaged by common
static charges which build up on people, tools and other non-conductors or semiconductors. To avoid such a
damage, it has to be handled with care and including all relevant procedures (like proper grounding of people
handling the hardware, shielding/covering to not to let a person touch the hardware unwanted, proper
packaging in ESD-bags, ...). For more information please refer to related regulations and standards regarding
handling of ESD devices. The EMC Directive (2014/30/EU) does not apply to this hardware as it is not intended
for an end user (a person without knowledge of EMC) and as it is not otherwise made available on the market.

The Low Voltage Directive (2014/35/EU) does not apply to this hardware as the voltage supply is below the
50V AC / 75V DC limit.

This document describes the E1803D-hardware but may contain errors and/or may be changed without further
notice.

9

4 Overview
This document describes the E1803D compact scanner controller board, its electrical characteristics and
usage.

The E1803D scanner controller board is designed for controlling galvanometric scanner systems with two or
three axes. It also supplies extensive signals for laser and external control. The communication between the
host system and the controller boards is done via Ethernet or USB.

This is an all-in-one controller which provides all interfaces that are required to control common lasers and
additional hardware. For a modular controller which can be configured according to some special requirements
please refer to https://halaser.systems/E1803.php.

4.1 Features
The E1803D controller can be used to control 2D or 3D scanheads that come with a XY2-100 interface. It
offers the following features:

 XY2-100 and XY2-100-E interface to scanhead with X, Y and optional Z channel
 100 Mbit Ethernet connection
 USB 2.0 connection
 online XYZ grid correction with support for several correction table file formats (like SCAPS™ .ucf,

Scanlab™ .ctb and .ct5, Raylase™ .gcd, Rofin™ .fcr, Han’s™ .crt, CTI™ .xml, Sunny™ .txt)
 high-definition online XYZ grid correction with BeamConstruct HD correction files (.bco)
 switching between up to 16 preloaded grid correction tables
 10 microseconds vector cycle time and resolution (microstep period)
 command execution time down to 0,5 microseconds
 realtime processing of laser and scanner signals
 26 bit internal resolution (for better accuracy also with 16 bit or 18 bit hardware output)
 512 MByte DDR3 RAM
 1 GHz CPU clock
 support for microSD and microSDHC cards
 optional matrix laser dot marking mode with up to 13 dots, up to two independent lines of text and up

to 2 MHz dot frequency
 internal command and vector data list with more than 20 million entries
 continuous list concept, no need to swap between buffers
 BeamConstruct PRO license included
 open source compatibility library that emulates existing programming interface for fast and easy usage

with existing software (contains e.g. Scanlab™ RTC4™, SCAPS™ USC™/SCI and other compatible
interfaces)

 LP8 8 bit CMOS level parallel digital output e.g. for controlling laser power or laser waveform type
 LP8 latch CMOS level digital output for usage with IPG™ and compatible laser types
 Main Oscillator CMOS level digital output for usage with IPG™ and compatible laser types
 12 bit 0..10V analogue output e.g. for controlling laser power
 two laser CMOS level digital outputs for usage with YAG, CO2, IPG™, SPI™ and compatible laser types

(outputs can provide PWM frequency, Q-Switch, FPK-pulse, CW/continuously running frequency,
stand-by frequency) running with frequencies of up to 20 MHz

 8 freely usable digital outputs providing either CMOS level or electrically insulated outputs via
external power supply

 8 freely usable digital inputs expecting either CMOS level or electrically insulated inputs via external
power supply

 4 digital inputs usable for quadrature encoder signals for 1D and 2D marking on-the-fly applications
 RS232/RS485 serial interface for communication with external devices
 scanhead power supply via controller card to save additional wiring

10

https://halaser.systems/e1701.php

5 Position Within The System
The E1803D scanner controller system can be connected to the host via Ethernet or USB to receive laser
marking data from BeamConstruct laser marking application or from any other application which makes use of
one of the provided programming possibilities (as described below). When using Ethernet connection, it
optionally can be connected via USB too. In this case USB connection is used to retrieve BeamConstruct PRO
license from the board:

Since 100 Mbit Ethernet provides much faster data transfer than USB 2.0, this connection type is preferred.
Especially in case complex marking data with many short lines that result in many separate jump and mark
commands are used, Ethernet connection is more responsive.
When using USB connection with such data, time from sending data to the card until marking operation can be
started may be longer (up to several seconds in worst case) caused by slower USB data transfer:

In both cases the board itself is connected with the scan head to submit 2D or 3D position information to it.
Beside of that it is connected to a laser to submit motion-synchronous laser data. Additional communication
channels between the E1803D scanner controller board and a connected machine can be done via separate IOs
of the digital interface.

11

6 Board And Connectors

The E1803D Digital Laser Scanner Controller Card provides following connectors and interfaces:
1. Ethernet – for communication with the host system, marking information are submitted via this path
2. USB – via microUSB connector for providing BeamConstruct PRO license to host system and

optionally for submitting marking data from host to E1803D card (in case Ethernet is not used)
3. Power – connect with power supply
4. User LEDs – show operational and error states of card
5. microSD-card – storage place for firmware and extended configuration file, can be used to upgrade

firmware, to change the card's IP and other things more
6. Scanner signals – 26 pin and D-SUB25 scanner output connectors which provides XY2-100 scanner

signals and power to scanhead
7. Laser signals – connector with different signal for controlling a laser and for starting/stopping mark

operation
8. Digital interface – in- and output connector for control of external devices and for connecting marking

on-the-fly encoder(s)
9. Serial interface connector for connections to RS232 or RS485 devices
10. Extension connectors
11. Code-pin for correct placement of extension boards

6.1 Ethernet
This is a standard RJ45 Ethernet plug for connection of the board with the host system. The controller board is
accessed via this connection, all scanner and laser control data are sent via Ethernet. Thus it is recommended
for security reasons to have a separate 1:1 connection from the host to the scanner controller card by using a
separate Ethernet port. In case this is not possible, at least an own, physically separated sub-net for all scanner
controller cards should be set up. This network of course should be separated from normal network completely.
Ethernet connection is initialised during start-up only, thus Ethernet cable connecting E1803D board and host
system needs to be plugged before the board is powered up.
By default the E1803D board is using IP 192.168.2.254, thus the Ethernet network the card is connected with
needs to belong to subnet 192.168.2.0/24.
PLEASE NOTE: For security reasons it is highly recommended to not to mix a standard communication network
with an E1803D network or to connect the scanner controller card with a standard network. Here it may be
possible someone else in that network (accidentally) connects to that scanner controller and causes laser
emission.
The IP of the scanner controller can be changed. This is necessary e.g. in case an other subnet has to be used or
in case the E1803D board has to be operated in multi-head environments where more than one card will be

12

accessed at the same time. The IP can be configured using e1803.cfg configuration file that is placed on
microSD-card. To change the IP, please perform the following steps:

1. disconnect E1803D board from power and USB
2. remove microSD-card
3. put microSD-card into a desktop computer, this may require a microSD- to SD-card-adapter
4. open the drive that is assigned to the card
5. open file e1803.cfg using a text editor like Notepad or kwrite
6. add a line or edit an existing line "ip0=", here the desired IP has to be appended (as example: when you

want to configure IP 192.168.2.13 the line has to be "ip0=192.168.2.13" – without any quotation
signs

7. save the file
8. eject the drive the card is assigned to
9. place the microSD-card in E1803D board (place without the use of force, notice correct orientation

with connectors of SD-card to top!)
10. power up card

When User LEDs do not light up as described below, please check if microSD-card is placed in board correctly.

6.1.1 Ethernet Configuration With Windows 10

When E1803D scanner controller is accessed via Ethernet, it is recommended to have a 1:1 connection to the
host PC for security reasons. Since the controller is working with a static IP (default is 192.168.2.254) the
Ethernet port on host PC has to be configured with an IP of same subnet in order to allow access to it. For
Windows 10 (and similar) this configuration has to be done using following steps:

1. right-click the network-symbol in your taskbar
2. Select “Open network and internet settings”
3. Select “Ethernet” on the left
4. find the network interface E1803D has to be connected with and select it
5. Click the “Edit” button in section “IP settings”
6. now a window opens where “IPv4” has to be turned on and that has to be configured as follows:

There you can specify an IP for your host PC. It has to belong to network 192.168.2.xxx and can be any
number except than 192.168.2.254 (this is already the IP of the scanner card), 192.168.2.0 or
192.168.2.255.

13

6.1.2 Ethernet Configuration With Windows 11

When E1701 scanner controller is accessed via Ethernet, it is recommended to have a 1:1 connection to the
host PC for security reasons. Since the controller is working with a static IP (default is 192.168.2.254) the
Ethernet port on host PC has to be configured with an IP of same subnet in order to allow access to it. For
Windows 10 (and similar) this configuration has to be done using following steps:

1. right-click the network-symbol in your taskbar
2. Select “Network and internet settings”
3. Select “Ethernet” in the opened list
4. find the network interface E1701D has to be connected with and select it
5. Click the “Edit” button right beside “IP assignment”
6. now a window opens where “Edit IP Settings” has to be switched from “Automatic (DHCP)” to “Manual”
7. next “IPv4” has to be turned on and the remaining parameters in this window have to be configured as

follows:

There you can specify an IP for your host PC. It has to belong to network 192.168.2.xxx and can be any
number except than 192.168.2.254 (this is already the IP of the scanner card), 192.168.2.0 or
192.168.2.255.

6.1.3 Ethernet Configuration With Linux

When E1803D scanner controller is accessed via Ethernet, it is recommended to have a 1:1 connection to the
host PC for security reasons. Since the controller is working with a static IP (default is 192.168.2.254) the
Ethernet port on host PC has to be configured with an IP of same subnet in order to allow access to it. For Linux
(with NetworkManager) this configuration has to be done using following steps:

1. right-click the network-symbol in taskbar
2. click "Edit Connections..."
3. select the "Wired" network interface the scanner card is connected with and press button "Edit"

14

4. go to tab-pane "IPv4 Settings" and configure it as shown below:

There you can specify an IP for your host PC. It has to belong to network 192.168.2.xxx and can be any
number except than 192.168.2.254 (this is already the IP of the scanner card), 192.168.2.0 or
192.168.2.255.

6.2 USB
This is a standard microUSB-connector for connection of the board with the host system. It is used to retrieve
BeamConstruct PRO license and optionally to send marking data to the card. When USB is used for sending all
scanner and laser data, Ethernet cable does not need to be connected.
PLEASE NOTE: USB 2.0 is much slower than a standard 100 Mbit Ethernet connection, so expect slower
execution in case of complex marking data!
The required device driver is installed automatically during the installation of the HALsetup software package
(Windows) or comes with operating system by default (Linux). E1803D card appears as COM-interface on
Windows using any free number for the port. With Linux it appears as /dev/ttyACMx where "x" is any number.
These numbers are provided by the operating system automatically.
When no external power supply is connected, USB provides 5V power supply too. So whenever the card has to
be stopped, both USB and power have to be disconnected in order to shut it down completely. It is not
recommended to use USB as power supply, additional, external power should be connected in order to operate
E1803D controller correctly. When E1803D is powered via USB only, not all functions are available. Here
things like power supply of connected scanhead and 0..10V analogue output signals AOut0 and AOut1 will not
work.
Depending on the capabilities of the used USB host, there also may be other failures and limitations caused by
power-brownouts and drop-outs.

When the controller is connected via USB, a BeamConstruct PRO license is provided via this interface
automatically. This is done without the need to configure anything, and as long as following conditions are true:

• physical USB connection from controller to host PC exists
• the COM-port (Windows) has a number smaller than COM20
• the controller is working and the Alive-LED in blinking

It is also possible to have the USB-connection for license retrieval only and to use the Ethernet-connection to
transfer marking data to the controller, both can exist beside each other.

6.3 Power
Power supply for E1803D scanner controller board is done via 3 pin screw connector. Here a power in range
+12..+24V or +-12..+-24V can be connected. This connector powers the board and optionally can be used to

15

power the scanhead too as this power is routed to the DB25-connector directly and from there can supply the
scanhead directly (for details please refer to description of XY2-100 / XY3-100 connector below).

+V GND -V

Following possibilities to connect power exist:

+V GND -V Supported Features / Remarks

12..24 V connected unused Power E1803D and analogue outputs AOut0 and AOut1

12..24V connected 12..24V
Power E1803D, analogue outputs AOut0 and AOut1 and scanhead via XY2-
100 / XY3-100 connector, input voltage has to be the same voltage that is
required to operate the scanhead

12..24V unused 12..24V Not allowed!

unused connected 12..24V Not allowed!

unused unused unused

Power supply needs to be done via USB, then only E1803D is powered;
scanhead needs a separate power supply connection and the wires 9..13 and
22..25 of the D-SUB25 connector need to be interrupted between scanhead
and controller!

other other other Not allowed!

When all three inputs are connected to a bipolar power supply providing +-12..+-24V to power both, the
controller and a connected scanhead, the input voltage is feed to the scanhead directly via XY2-100 connector.
Here the voltage has to be equal to the voltage required by the scanhead (typically +-15V or +-24V). Power
supply needs to provide 1A plus current required for connected scanhead. For more details please refer to
section about XY2-100 connector below.

When no power supply with symmetric/bipolar outputs is available, it is possible to combine two standard
power supplies, here GND of the first power supply has to be connected with +V of the second power supply
and with the GND-screw-connector of E1803D:

ATTENTION: When connecting wires to the screw terminals of the power connector, do not transmit any force
to the PCB where the green connector is soldered at! While screwing tight the wires, hold the connector by
hand to catch the force but do not hold the PCB only!

6.4 User LEDs
The real operational state of the card is shown by four additional LEDs described here:

16

1. AE (Alive/Error) – blue – this LED is turned on permanently (with full brightness) as soon as the card
was powered up and the firmware boots properly. When it is not turned on with full brightness after
some seconds, please check if the microSD-card is placed properly and if it contains a working firmware
file (for details please refer below).
After boot process has completed successfully, it starts blinking slowly and with same on and off times.
This is an alive-notification, as long as it blinks, the board is working and ready for operation. During
operations the blink frequency may vary.
When this LED starts blinking with a changed on-time (LED is off for a long time and flashes two or
three times for a short time only), a fatal error has occurred that normally should never happen. When
this happens, in some cases the board can't continue with operation until the reason for error is
removed and the board is restarted.
In case this LED flashes signalling an error-state, please:
- check if you are using valid E1803D extension boards only (and no other 3rd party hardware)
- check if you are using latest firmware and host software
- check all connections and cables
- undo your latest changes in hardware and configuration
If these steps do not help, please contact us for further assistance.

So this LED can signalise four operational states:

1 – Powered on but firmware not yet loaded – turned on permanently but with low brightness
2 – Not ready / booting – turned on permanently with full brightness
3 – Operational – blinking, on and off times are the same
4 – Error – flashing three times, LED is off most of the time and is turned on for a very short time only
(with some previous firmware version the error is signalled by flashing two times)

Please note: during start-up and when the configuration parameter “eth=2” is set in e1803.cfg, the
blinking frequency of operational state 2 can be much lower. This is the case as long as the controller
tries to detect an Ethernet connection. It ends and switches to faster blink frequency as soon as this
detection is timed-out or as soon as a connection via Ethernet or USB is established.

2. MA (Marking Active) – blue – this LED is turned on as long as a marking operation is running. This LED
does not correspond to the laser gate signal, comparing to it it’s also enabled during jumps when laser is
turned off but marking operation itself is active.

17

3. LG (LaserGate) – red – this LED shows modulation state of the laser and signal the state of the laser
gate output. It is turned on as long as the laser is turned on and the laser gate is high. This LED does
NOT signal the same like the marking active LED described above since it will be turned off during
jumps.

4. MO (Main Oscillator) – yellow – this LED is specific to the Main Oscillator output signal described
below. As long as the signal is on (HIGH-signal at output pin), the LED is turned on.

6.5 microSD-Card
The microSD-card is storage place for firmware and configuration files. Here SD and SDHC cards with a
capacity of up to 32 GB are supported. It is plugged with the contacts of the SD-card oriented to upper side.

To remove the microSD-card, first disconnect all power from the E1803D board completely (including USB).
Next press microSD-card gently into the board until you can hear a click-noise. Then you can pull it out of the
board. To place a microSD card, the same has to be done in reverse order: place it into the E1803D board’s card
slot and press it gently until a noise signals locking of the card. Now the board can be powered.
E1803D board is shipped with a card containing firmware and configuration files:

• e1803.fwi – firmware file that is used to operate the board, to be replaced when a firmware update is
provided;

• e1803.cfg – configuration text file, can be edited using a text editor in order to modify cards
configuration

• e1803.dat – additional data file that is used to operate the board, to be replaced when a firmware
update is provided

• fonts/ – subdirectory containing fonts for dot marker mode

To use an other microSD card than the one shipped with the board, following conditions have to be met:
• maximum total size of 32 GB (SD or SDHC card)
• FAT32 formatted
• using only one partition
• BOOT-flag is set
• e1803.fwi and e1803.dat file available on card (e1803.cfg is optional)

An additional file e1803.cfg can be placed on the card too. It contains plain ASCII text, acts as configuration file
and can contain several parameters and its values which are separated by an equal-sign. Every of the possible
parameter/value pairs has to be located in an own line. Following configuration parameters are possible within
this file:

Parameter Description Example
adcfreq Specifies the ADC (analogue digital converter) sampling

frequency. With this value the update rate of the analogue
input (requires an extension board) can be modified. The
higher this value is, the more fast changes of the analogue
input value can be detected. On too big values the analogue
sampling may affect the timing accuracy of the output, thus
this value should be kept as low as possible. The default value
is 5000, the possible range is from 1000 to 3000000.
This parameter requires a firmware version 8 or newer.

adcfreq=10000
set a sampling frequency of

10000 Hz

18

Parameter Description Example
corrtable0 Specifies a correction table file in .bco, .ctb, .ct5, .ucf, .gcd, .xml

.crt or .txt format to be loaded on start-up. When this
parameter is set, the specified correction table is used
exclusively and all correction data possibly sent from the host
are ignored. The correction file itself has to be located on
microSD-card too. When the Error-LED is turned on after a
correction table file was configured, E1803D board was not
able to load it for some reason.

corrtable0=0:/
D2_200.ctb

use file D2_200.ctb as
correction file and ignore all
correction tables possibly
sent from host application

corrtable<i
dx>

Specifies one of up to 16 correction table file in .bco, .ctb, .ct5,
.ucf, .gcd, .xml .crt or .txt format to be loaded on start-up.
When this parameter is set, the specified correction table is
used exclusively and all correction data possibly sent from the
host are ignored. The correction file itself has to be located on
microSD-card too.
This method has also to be used when running the controller
in stand-alone mode with .EPR files that require such a
correction.
When the Error-LED is turned on after a correction table file
was configured, E1803 baseboard was not able to load it for
some reason.
<idx> can be any value in range 0..15 and specifies the
storage location index of the correction file to be loaded.
Later the related correction file can be used via command
cscor.
When <idx> has to be set to values greater than 0, a
firmware version 6 or newer is needed.

corrtable7=0:/200_200
.bco

use file 200_200.bco as
correction file at index
position 7 and ignore all
correction tables possibly
sent from host application

ip0 Configures IP of Ethernet port. Here only IPs in
xxx.xxx.xxx.xxx notation are allowed but no host or domain
names.

ip0=192.168.2.100
specifies IP 192.168.2.100 to
be used for Ethernet interface
on next startup

passwd Specifies an access password that is checked when card is
controlled via Ethernet connection. This password
corresponds to password specified with function
E1803_set_password(), please refer below for a detailed
description.
When a client computer connects to the card without sending
the correct password, Ethernet connection to this host is
closed immediately.
PLEASE NOTE: this password does not replace any network
security mechanisms and does not give the possibility to
operate E1803D controller via insecure networks or
Internet! It is transferred unencrypted and therefore can be
"hacked" easily. Intention of this password is to avoid
collisions between several E1803D cards that operate in
same network and are accessed by several software
instances.
Maximum allowed length of the password is 48 characters. It
is recommended to not to use any language-specific
characters.

passwd=myCardPwd
set a password "myCardPwd"

standalone This command can be used to disable or enable a specific
stand-alone operation mode. For a detailed description of
possible parameters, operation modes and usage please refer
related section below.

iolatch When using one of the digital-input-controlled stand-alone
modes, this option can be used to latch the digital states in via
DIn7. For details please refer to section “7 Stand-Alone
Operation” below

iolatch=1
enable the latch-function via

DIn7

19

Parameter Description Example
iothres In stand-alone mode there are two conditions that cause a

loaded EPR file to be ready: it is fully loaded into the
secondary, marking buffer or a minimum amount of data is
available in secondary buffer. The minimum amount of
marking data can be set with the parameter “iothres”. The
smaller this value is, the faster a stand-alone file can be
started but in this case it also may happen there are not
enough data available so that interruptions occur during
marking. So a balance between speed and a secure, non-
interrupted marking process need to be found when this
value is modified.
By default “iothres” is 80000 which should fit to most stand-
alone applications, the maximum allowed value is 280000
and it should not become smaller than 10000

Iothres=120000
Set the threshold for

availability of the stand-alone
marking data to 120000

haltedloopt
imeout

This parameter is used in stand-alone modes “haltedloop” and
“iohaltedloop” (please refer to section “7 Stand-Alone
Operation” for detailed information). It defines a timeout for
the laser in unit seconds. If the current operation is active for
a longer time, the laser is turned off. It then can be turned on
only by toggling the enable-input (ExtStart) again.
This parameter requires firmware version 6 or newer.

haltedlooptimeout=5
sets the laser timeout to 5

seconds

haltedloop
buffer

This parameter is used in stand-alone modes “haltedloop” and
“iohaltedloop” (please refer to section “7 Stand-Alone
Operation” for detailed information). It defines a maximum
buffer size for the marking data. The buffer size should have a
size of 20000000 at max. The minimum size depends on the
specific application, in fact, when it is set to some too small
values, drop-outs in marking operation may occur.
Data which are already buffered in this marking mode can't
be modified any longer. So any change on marking speed,
laser power or similar (done e.g. by commands “cjsor”,
“cmsor” or “cpwor”) will apply only to data which are not yet
buffered. And as bigger as this buffer is, as longer it takes
until the first new data after change of any of these
parameters can be emitted.
This parameter requires firmware version 5 or newer.

haltedloopbuffer=1000
00

set the buffer to a maximum
size of 100000 commands
which is similar to data for

about 1 second marking time

autofile Loads a special .EPR stand-alone file or .CNC G-Code file from
SD-card in some specific stand-alone modes. For a detailed
description of possible parameters, operation modes and
usage please refer related section below. For a description of
supported G-Code commands, please check out related
section “16 Supported CNC G-Code Commands“

autofile=0:/
markdata.epr

loads a file markdata.epr from
disk; here 0:/ specifies the SD-
card to be used. The .EPR-file
itself can be generated within

BeamConstruct out of a
normal .BEAMP project file

autofile=0:/
markdata.cnc

same as above but a G-Code
file is provided which contains

marking information
iobuff Pre-loads one or more .EPR files to the RAM of the controller

to allow faster switching in “ioselect” or “idxselect” stand-
alone mode. This command can not be used to load file
“0.EPR”

iobuff=1
iobuff=3

pre-load files 1.EPR and
3.EPR on board start-up

20

Parameter Description Example
mipout Configure a Digi I/O output pin to be used as “mark in

progress”-signal by default; here an output bit number in
range 0..7 has to be configured which will be set to HIGH as
long as a marking operation is in progress, the value given
here can be overwritten by API-function
E1803_digi_set_mip_output();
this parameter requires firmware version 3 or newer

mipout=1
use DOut1 for mark-in-

progress signal

wetout Configure a Digi I/O output pin to be used as “wait for
external trigger”-signal by default; here an output bit number
in range 0..7 has to be configured which will be set to HIGH as
long as a marking operation is in progress and the controller
is waiting for an external trigger signal to arrive at ExtStart
input, the value given here can be overwritten by API-
function E1803_digi_set_wet_output();
this parameter requires firmware version 3 or newer

wetout=0
use DOut0 for mark-in-

progress signal

digiinit Initialises the digital outputs on firmware start-up with the
given defaults. This overrides the hardware defaults. The
default digital values set here are NOT available on power up
but a few seconds later after firmware has been loaded and
started.
This function requires firmware version 5 or newer.

digiinit=2
set DOut1 to HIGH initially

and all other outputs to LOW

digimask Masks the digital inputs and specifies which inputs can be
read. All input bits which are ignored by this command by
setting the related value to 0, are no longer read. This may be
useful for applications where encoder inputs are used
together with a “ioselect” stand-alone operation and where
the random state of the encoder has to be masked out.
This function requires firmware version 5 or newer.

digimask=253
use only DIn2..DIn7 as input

and ignore DIn0 and DIn1

digidebc Sets a debouncing time / filter time for the digital inputs of
the digital interface in order to not to let the inputs react on
noise or bouncing of mechanical inputs. The debouncing
value is given in time-units where every time-unit is equal to
31 usec. By default 7 time-units are set.

digidebc=10
set the debounce-time to 310

usec

lasergate By default, the laser on/off information is provided via the
LaserGate output and with CMOS logic voltage level. With
this parameter, a digital output of the digital interface can be
specified to provide the laser gate signal in parallel.
Please refer to “6.8 Digital Interface” for further details about
the digital interface.
This configuration parameter requires firmware version 14 or
newer

lasergate=3
Use DOut3 to provide the

laser gate signal

u0brate Set the bitrate of UART0 RS485/RS232 serial interface on
E1803D. By default this port is initialised with a speed of
115200 bps, this value can be changed with this parameter.
Setting an u0brate of 0 disables the serial port completely

u0brate=9600
set a new bitrate of 9600 bps
for UART0 E1803D on-board

serial port
u0bits Set the number of data bits of UART0 RS485/RS232 serial

interface on E1803D. By default this port is initialised with 8
data bits, this value can be changed to a word length of 5, 6, or
7 bits with this parameter.
This parameter requires firmware version 4 or newer.

u0bits=7
set a new word length of 7

bits for UART0 E1803D on-
board serial port

u0parity Set the parity of UART0 RS485/RS232 serial interface on
E1803D. By default this port is initialised no parity (=0). For
odd parity a value of 1 has to be set, for even parity a value of
2 has to be used.
This parameter requires firmware version 4 or newer.

u0parity=2
enable even parity for UART0
E1803D on-board serial port

21

Parameter Description Example
u0stop Configures the number of stop-bits used within a single

UART0 serial frame:
• when this parameter is not set or when it is set to 1,

each frame ends with one stop bit
• when this parameter is set to 2 and when u0bits

configures 5 data bits, each frame ends with 1.5 stop
bits

• when this parameter is set to 2 and when u0bits
configures, 6, 7 or 8 data bits, each frame ends with 2
stop bits

This parameter requires a firmware version 17 or newer.

u0stop=1
each frame ends with 1 stop

bit

u0bypass Bypasses the on-board serial port to a specific function, here
following values are possible:
0 – no bypassing, the serial port can be used out of the contro
ldata stream as usual
1 – use as control interface, when set to this value, the on-
board serial port 0 accepts the same commands and data as
the Telnet Ethernet interface and the USB serial port
This parameter requires firmware version 14 or newer.

u0bypass=1
allow control communication
with E1803D via serial port

u1brate Set the bitrate of UART1 RS485/RS232 serial interface on
E1803D Multi-IO Extension Board (deprecated). By default
this port is disabled and has to be activated by setting a
bitrate.
This parameter exists in firmware versions 4 to 13 and
requires a Multi-IO Extension Board.

u1brate=115200
set a new bitrate of 115200

bps for UART1 serial port

u1bits Set the number of data bits of UART1 RS485/RS232 serial
interface on E1803D Multi-IO Extension Board (deprecated).
By default this port is initialised with 8 data bits, this value
can be changed to a word length of 5, 6, or 7 bits with this
parameter.
This parameter exists in firmware versions 4 to 13 and
requires a Multi-IO Extension Board.

u1bits=7
set a new word length of 7
bits for UART1 serial port

u1parity Set the parity of UART1 RS485/RS232 serial interface on
E1803D Multi-IO Extension Board (deprecated). By default
this port is initialised no parity (=0). For odd parity a value of
1 has to be set, for even parity a value of 2 has to be used.
This parameter exists in firmware versions 4 to 13 and
requires a Multi-IO Extension Board.

u1parity=1
enable odd parity for E1803D

on-board serial port

busid This command requires the parameter u0bypass set to 1:
with the busid it is possible to connect several E1803D
controller cards via RS285 serial interface in bus topology.
The identifier in range 0..99 given with this command then
can be used as identifier prior to every c- or d-command in
order to let the correct controller card react on a command.
With the busid set, echoing (command “cecho”) is turned off
automatically for the serial interface.
This parameter requires firmware version 16 or higher.

busid=9
Specifies the ID 9 for the

controller card. With this ID
set, all d- and c-commands
have to be preceded by a

string “b09” to let the
controller react on them

tunereadyo
ut

In stand-alone modes, the ready-state of a loaded stand-
alone project is signalled via DOut0 by default (please refer
to section “7.3 Stand-Alone Control” for further details).
Using this parameter, the used output can be changed. Here
following values can be given:

• 0 – DOut0 (default)
• 1 – LaserA (has to be configured as GPO via the

relate tune-flag)
• 2 – LaserB (has to be configured as GPO via the

relate tune-flag)
This parameter requires firmware version 13 or newer.

tunereadyout=1
use LaserA to signal state

“ready” in stand-alone mode

22

Parameter Description Example
tunemarko
ut

In stand-alone modes, the ready-state of a loaded stand-
alone project is signalled via DOut1 by default (please refer
to section “7.3 Stand-Alone Control” for further details).
Using this parameter, the used output can be changed. Here
following values can be given:

• 0 – DOut1 (default)
• 1 – LaserA (has to be configured as GPO via the

relate tune-flag)
• 2 – LaserB (has to be configured as GPO via the

relate tune-flag)
This parameter requires firmware version 13 or newer.

tunemarkout=2
use LaserB to signal state

“ready” in stand-alone mode

tune Enables special functions and features that are not activated
by default. As parameter a number can be handed over that
specifies the functions to be enabled. Starting with firmware
version 14 the number can also be specified as hexadecimal
value when it is prefixed with “0x”. Several of these functions
can be combined by adding their related numbers:

1 (0x01) – use DIn7 of digital interface connector as external
trigger, this disables ExtStart input on laser signal connector

2 (0x02) – use additional marking encoder inputs on DIn2 and
DIn3 for 2D marking on-the-fly operations

4 (0x04) – enable storage of serial number count values to
microSD card; this option is useful in case of stand-alone
operation mode when dynamic data with serial number
counting is used. When it is set, the current count value of all
used serial numbers is stored and reloaded on next power up.
Thus their values are not get lost when power was turned off.
The values are stored in a file with the same name like the
"autofile" or the currently loaded .epr file but with extension
".ser".
ATTENTION: The file is saved on the FatFS formatted
microSD card. FatFS is NOT fault-proof, means it can be
corrupted when power is turned off during writing. So when
this option is enabled, user has to ensure power is NOT
turned of while the card writes to disk. Writing of serial
number states is always done in case they have changed, then
it is started when Alive/Error LED of E1803D board is
switched off. Write operation is finished when this LED is
turned back on the next time. So to ensure data are written
successfully, it is recommended to let this LED blink two
times after last mark operation has been finished or to wait
for about 4 seconds.
ATTENTION: due to this limitation it is not recommended to
work with this option but to save the state of the serial
numbers by sending ASCII command "cssta" instead (please
refer below for details)!

8 (0x08) – invert LaserGate output to work as active HIGH
signal; when this option is set, logic of LaserGate-LED
changes too, it is on as long as laser is turned off and it is off as
long as laser is on

16 (0x10) – invert LaserA output to work as active HIGH
signal

32 (0x20) – invert LaserB output to work as active HIGH

tune=1
disables ExtStart input and

switches over external trigger
function to DIn7 input

tune=0x1000
operate the scanner output in

XY2-100E mode

23

Parameter Description Example
signal

64 (0x40) – use LaserA output as GPO (general purpose
output pin); when this flag is set, LaserA output is no longer
able to emit a frequency but can be used as digital output pin;
when this value is set, a tune-value of 16 (invert LaserA) is
ignored. This flag has to be set e.g. when LaserA has to be
used together with tunereadyout or tunemarkout
parameter.

128 (0x80) – use LaserB output as GPO (general purpose
output pin); when this flag is set, LaserB output is no longer
able to emit a FPK pulse but can be used as digital output pin;
when this value is set, a tune-value of 32 (invert LaserB) is
ignored.. This flag has to be set e.g. when LaserB has to be
used together with tunereadyout or tunemarkout
parameter.

4096 (0x1000) – operate in enhanced XY2-100 18 bit mode;
when this value is added to the tune-parameter, the
controller outputs more accurate 18 bit position data instead
of the standard 16 bit values in normal operation mode; this
mode needs to be supported by the connected scanhead,
elsewhere the results are unpredictable.

8192 (0x2000) – operate in XY3-100 mode with extended
resolution; when this value is added to the tune-parameter,
the controller outputs more accurate position data instead of
the standard 16 or 18 bit values in normal operation mode;
this mode needs to be supported by the connected scanhead,
elsewhere the results are unpredictable.

32768 (0x8000) – invert the mark-in-progress signal
(requires firmware version 5 or newer)

65536 (0x10000) – invert the wait-external-trigger signal
(requires firmware version 5 or newer)

524288 (0x80000) – inverts the logic of the ExtStop input; by
default, the stop-input is LOW and has to be set to HIGH in
order to stop a running operation. When this flag is set, this is
inverted, ExtStop has to kept HIGH for normal operation and
a stop is performed as soon as it goes to LOW.
This flag requires firmware version 14 or newer.

4194304 (0x400000) – invert the LP8 signal of laser
interface (requires firmware version 14 or newer)

8388608 (0x800000) – invert the MO (main oscillator) signal
of laser interface (requires firmware version 14 or newer)

16777216 (0x1000000) – inverts the logic of the ExtStart
input. By default, the start-input reacts on a rising edge.
When this flag is set, this is inverted and a falling edge is
expected to release an external trigger. This also has an effect
on the behaviour of tune-flag 0x2000000, it is inverted too.
This flag requires firmware version 14 or newer.

24

Parameter Description Example
tunexy3 Enables special functions and features related to the XY3-

100 scanner interface. The parameters set with this function
are set only when the XY3-100 data protocol is used. They
are submitted after enabling the XY3-100 mode and prior to
first transmission of position data to the connected scanhead.
When the connected scanhead does not support the related
functions, they will not have any effect
This parameter requires a firmware version 38 or newer.

As parameter a number can be handed over that specifies the
functions to be used. Several of these functions can be
combined by OR-concatenating their related numbers:

1 – turn auto-calibration function on (can’t be combined with
flag value 2)

2 – turn auto-calibration function off (can’t be combined with
flag value 1)

4 – turn dynamic temperature compensation on (can’t be
combined with flag value 8)

8 – turn dynamic temperature compensation off (can’t be
combined with flag value 4)

tunexy3=5
Turns on the auto calibration

and dynamic temperature
compensation of a scanhead

sntp0 Allows to specify the IP of an SNTP time server. This option
can be used in case of Ethernet usage to synchronise
controller with an external time source. E1803D tries to
connect to this server after initialisation of Ethernet interface
and – if not successful – a few more times. These additional
connection attempts are done whenever the Alive/Error-LED
is switched on.
ATTENTION: when this function has to be used, the network
or host-computer the controller is connected with needs to
be able to route this request. This is a potentially dangerous
operation because a connection between encapsulated
machine network and open and dangerous Internet has to be
established. Since this is NOT RECOMMENDED in general,
this option should be used ONLY when it is 100% sure there is
no possibility for people from outside to intrude the machine
network! Instead of that is is recommended to set system
time manually using host-computer and ASCII command
"cstime" (please refer below). Alternatively it is also possible
to contact an own, network-internal NTP-server.
When this option is used, the gateway and netmask have to
be configured for the controllers Ethernet interface

sntp0=83.170.1.42 – IP
of time server at

3.de.pool.ntp.org is used for
SNTP time retrieval (not
recommended since this
requires a connection to

potentially dangerous
Internet!)

sntp0offset This value corresponds to sntp0 parameter above, it is used
when system time is retrieved from an external time server to
set an offset to the time returned from this server. The offset
has to be specified in unit seconds.

sntp0offset=-3600 –
specifies an offset of minus

one hour to the time returned
from time-server. So when

the time server would return
a current time of 11:42:17,

the system time of the
controller would be set to
10:42:17 with this value

gw0 Specifies a gateway-address for the scanner controllers
Ethernet interface. This option belongs to parameter "ip0"
and has to be set in case "sntp0" is used.

gw0=192.168.2.1 – use
192.168.2.1 as gateway

25

Parameter Description Example
nm0 Specifies the netmask for the scanner controllers Ethernet

interface. This option belongs to parameter "ip0" and has to
be set in case "sntp0" is used.

nm0=255.255.255.0 – use
upper 24 bits of current IP for

netmask
usb When this parameter is set to 0, USB interface is disabled

completely. This means it is no longer possible to connect to
E1803D USB serial interface via terminal software or via
BeamConstruct and it is also no longer possible to retrieve
BeamConstruct PRO license via USB. This option can be used
to suppress illegal access to USB and saves some power.

usb=0 – turn off USB
interface

eth This parameter specifies the behaviour of the Ethernet
interface. Here following values can be set:

• 0 – Ethernet network interface is disabled
completely. This means it is no longer possible to
connect to E1803D via Telnet or via BeamConstruct.
All SNTP-functionalities are disabled too. This option
can be used to suppress illegal access to Ethernet, to
save several seconds of startup-time and some
power.

• 1 – this is the default mode which enables the
Ethernet interface and checks once at the beginning
if some Ethernet hardware is connected to the
controller card; when the “eth”-parameter is not
specified at all, the resulting behaviour is the same

• 2 – this enables Ethernet polling mode; instead of
checking for an Ethernet device only once during
boot, in this mode the interface is polled regularly
until an electrical connection is detected. As long as
the controller is polling, the AE-LED blinks very slow
and toggles once in about 20 seconds, when an
Ethernet device was detected, the blink frequency
changes to normal speed;
PLEASE NOTE: when this mode is used, access via
USB is limited, so “eth” should be set to “2” only when
no communication via USB is intended.
The “eth”-value of 2 requires a firmware version 12 or
newer

eth=0 – turn off Ethernet
interface completely

pethd When Ethernet connection is used, it has to be established on
power-up of the controller card as this connection is set-up
and configured by the controller only once during boot. There
may be situations where the other side of the Ethernet
connection can not boot up as fast as E1803. In such cases
this parameter can be used. It delays initialisation of Ethernet
by the time given as parameter. The time is specified in unit
“delayticks” where one “delaytick” is equal to about 0,5
seconds.
This feature requires a firmware version 7 or newer.

pethd=20 – halt initialisation
of the controller for about 10
seconds prior to initialisation

of Ethernet interface

cswaf Sets a factor in unit bits per mm that is used with all
commands that specify some distance or position (such as
cspof). When this factor is set to a proper value, the given
positions/distances can be specified in unit um instead of bits.
This parameter requires a firmware version 18 or newer.

cswaf=671089 – set the
conversion factor from bits to

mm for a 100x100 mm
working area

dotfont0
dotfont1
dotfont1y
dotdist
dottime

These commands are deprecated and related to matrix laser
dot marking mode. For details please refer related section “8
Matrix Laser Dot Marking Mode” below.

26

6.5.1 Firmware Update

As described above, the firmware is located on microSD-Card and therefore can be updated easily:
1. remove the microSD-Card as described above
2. download a new firmware from https://halaser.systems/download/Firmware/E1803/ (the higher the

number in the file name, the newer the firmware is)
3. copy the contents of this ZIP-file to microSD-Card (please take care about e1803.cfg in case it contains

a changed configuration)
4. reinsert microSD-Card as described in previous section

6.6 Scanner Signals
The 26 pin connector provides signals to be used to control up to three galvos of a scanhead and to power it up.

The connector provides following signals when operated in XY2-100, XY2-100E, XY2-200 or XY2-200E mode:
Upper

Row
Of

Pins

Signal Voltage Remarks Lower
Row

Of
Pins

Signal Voltage Remarks

1 CLK-

XY2-100-
compatible signals

2 CLK+

XY2-100-
compatible signals

3 SYNC- 4 SYNC+
5 X- 6 X+
7 Y- 8 Y+
9 Z- 10 Z+
11 STATUS- 12 STATUS+
13 14
15 16
17 +V +12..24V

Power supply to
scanhead (output)

18 +V +12..24
V

Power supply to
scanhead (output)

19 +V +12..24V 20 GND GND
21 GND GND 22 GND GND
23 -V -12..24V 24 -V -12..24V
25 -V -12..24V 26

27

https://halaser.systems/download/Firmware/E1803/

The D-SUB25 connector provides the same signal as described above on a default XY2-100 connector:

CLK-
SYNC-

X-
Y-
Z-

STATUS-

+V
+V

GND
-V
-V

CLK+
SYNC+
X+
Y+
Z+
STATUS+

+V
GND
GND
-V

The connections -V, GND and +V can be used to power the scanhead with 12..24V and max. 3A. This requires a
bipolar external power supply connected to the controllers three-pin power connector described above. Power
from this power connector is routed to the -V, GND and +V pins directly, so the provided voltage should be
stabilised according to the requirements of the scanhead.

PLEASE NOTE:
• do not connect scanheads that consume more than 3A (peak and continuously), this may damage the

controller and voids warranty!
• do not feed more than 24V into the three-pin power connector of E1803!
• feed a stabilised voltage into E1803D controller according to requirements of connected scanhead!
• when E1803 card is powered via three-pin power connector but scanhead has not to be powered out of

the card, the 9 lines for -V, GND, +V (9..13 and 22..25) need to be disconnected, means the used D-
SUB25 cable needs to leave these pins open!

• Violating one of these rules may damage the E1803D card or scanhead irreversibly!

E1803D can be configured to work in XY3-100 mode too. This configuration requires a firmware version 10 or
newer for 2D XY3-100 signals and a firmware version 11 or newer for 3D XY3-100 signals. The scanner signal
connector provides following signals when operated in XY3-100 mode:

Upper
Row

Of
Pins

Signal Voltage Remarks Lower
Row

Of
Pins

Signal Voltage Remarks

1 A-

XY3-100-
compatible signals

2 A+

XY3-100-
compatible signals

3 B- 4 B+
5 C- 6 C+
7 D- 8 D+
9 E- 10 E-
11 12
13 14
15 16
17 +V +12..24V

Power supply to
scanhead (output)

18 +V +12..24
V

Power supply to
scanhead (output)

19 +V +12..24V 20 GND GND
21 GND GND 22 GND GND
23 -V -12..24V 24 -V -12..24V
25 -V -12..24V 26

The D-SUB25 connector provides the same signal as described above:

28

A-
B-
C-
D-
E-

+V
+V

GND
-V
-V

A+
B+
C+
D+
E+

+V
GND
GND
-V

The connections -V, GND and +V can be used to power the scanhead with 12..24V and max. 3A. This requires a
bipolar external power supply connected to the controllers three-pin power connector described above. Power
from this power connector is routed to the -V, GND and +V pins directly, so the provided voltage should be
stabilised according to the requirements of the scanhead.

PLEASE NOTE:
• do not connect scanheads that consume more than 3A (peak and continuously), this may damage the

controller and voids warranty!
• do not feed more than 24V into the three-pin power connector of E1803!
• feed a stabilised voltage into E1803D controller according to requirements of connected scanhead!
• when E1803 card is powered via three-pin power connector but scanhead has not to be powered out of

the card, the 9 lines for -V, GND, +V (9..13 and 22..25) need to be disconnected, means the used D-
SUB25 cable needs to leave these pins open!

• Violating one of these rules may damage the E1803D card or scanhead irreversibly!

6.7 Laser Signals
The 26 pin connector provides several signals to be used to control a laser source. It can be used e.g. together
with YAG, CO2, IPG™, SPI™, fiber and compatible lasers since it provides additional signals and frequencies
these laser types may require for proper operation.

The connector provides following signals:

29

Upper
Row

Of
Pins

Signal Voltage Remarks Lower
Row

Of
Pins

Signal Voltage Remarks

1 LP8_0 CMOS, 0/5V,
max 8 mA

2 GND GND

3 LP8_1 CMOS, 0/5V,
max 8 mA

4

5 LP8_2 CMOS, 0/5V,
max 8 mA

6 5V 5V Output

7 LP8_3 CMOS, 0/5V,
max 8 mA

8 MO CMOS, 0/5V,
max 8 mA

Main Oscillator

9 LP8_4 CMOS, 0/5V,
max 8 mA

10

11 LP8_5 CMOS, 0/5V,
max 8 mA

12 AOut0 0..10V, max
15 mA

Analogue
output

13 LP8_6 CMOS, 0/5V,
max 8 mA

14 AOut1 0..10V, max
15 mA

Analogue
output

15 LP8_7 CMOS, 0/5V,
max 8 mA

16 ExtStart CMOS, 0/5V Input control
signal

17 LP8
Latch

CMOS, 0/5V,
max 8 mA

18 5V 5V

19 LaserB CMOS, 0/5V,
max 14 mA

FPK 20 Connected to
pin 21

21 Connected to pin
20

22 LaserA CMOS, 0/5V,
max 14 mA

PWM,
frequency or Q-
Switch

23 GND GND 24 ExtStop CMOS, 0/5V Input control
signal

25 5V 5V Output 26 Laser
Gate

CMOS, 0/5V,
max 14 mA

LP8_0...LP8_7 provide a parallel 8 bit output signal (e.g. for power control with IPG™/fiber lasers, waveform
selection for SPI™ lasers and other).

LP8 Latch pin signals valid output at LP8_0..LP8_7 by submitting a latch pulse of software-controlled length.

MO can be used to enable main oscillator (e.g. for IPG™/fiber lasers or compatible), this signal is also visualised
by the MO LED described above.

LaserA usage depends on software configuration and control, it is able to output a pulse-width modulated
frequency (e.g. for controlling CO2 lasers), CW/continuously running frequency (e.g. for fiber lasers) or Q-
Switch signal (e.g. for YAG lasers) in range 25 Hz..20 MHz.

LaserB can be used for emitting a FPK pulse (e.g. for YAG lasers).

AOut0 and AOut1 provide unipolar analogue output for controlling e.g. laser power or additional equipment or
can be used for controlling power and simmer for SPI™ lasers.
PLEASE NOTE: output of 10V at AOut0 and AOut1 depends on the used power supply. So in case board is
powered via USB, these outputs do not work, they require an external power supply via three-pin power
connector described above.

ExtStart expects a CMOS-level input signal in respect to GND and can be used as external trigger signal to start
operations when a HIGH-signal is detected at input pin.

ExtStop expects a CMOS-level input signal in respect to GND and can be used as external stop-signal in order
to stop a running marking operation by using a HIGH-signal at input pin.

30

6.8 Digital Interface
This interface consist of different parts which belong together:

1. a 20 pin connector for connecting digital in- and output signals
2. two red jumpers to select opto-insulated or internal powered mode for the digital in- and outputs
3. 4 green and 4 red LEDs which signal the state of the digital outputs
4. 8 yellow LEDs which signal the state of the digital inputs (with hardware revisions prior to v1.7 these

LEDs have been green)

The 20 pin connector provides 8 lines for input and 8 lines for output of digital signals that can work on CMOS
level (non-insulated mode) or via opto-couplers (electrically insulated mode with external power supply)
optionally. The operation mode depends on jumper settings described below. The connector is used as follows:

Upper
Row

Of
Pins

Signal Voltage Remarks Lower
Row

Of
Pins

Signal Voltage Remarks

1 Vext 5..24V Input voltage to
be used in opto-
insulated mode
only

2 GNDext GND External ground

3 DOut0 CMOS, 0/5V
or 0/Vext

Default level:
LOW 1)

4 DIn0 CMOS, 0/5V
or 0/Vext

Encoder-input A1
for marking on-
the-fly

5 DOut1 CMOS, 0/5V
or 0/Vext

Default level:
LOW 1)

6 DIn1 CMOS, 0/5V
or 0/Vext

Encoder-input B1
for marking on-
the-fly

7 DOut2 CMOS, 0/5V
or 0/Vext

Default level:
LOW 1)

8 DIn2 CMOS, 0/5V
or 0/Vext

Encoder-input A2
for marking on-
the-fly

9 DOut3 CMOS, 0/5V
or 0/Vext

Default level:
LOW 1)

10 DIn3 CMOS, 0/5V
or 0/Vext

Encoder-input B2
for marking on-
the-fly

11 DOut4 CMOS, 0/5V
or 0/Vext

Default level:
HIGH 1)

12 DIn4 CMOS, 0/5V
or 0/Vext

13 DOut5 CMOS, 0/5V
or 0/Vext

Default level:
HIGH 1)

14 DIn5 CMOS, 0/5V
or 0/Vext

15 DOut6 CMOS, 0/5V
or 0/Vext

Default level:
HIGH 1)

16 DIn6 CMOS, 0/5V
or 0/Vext

17 DOut7 CMOS, 0/5V
or 0/Vext

Default level:
HIGH 1)

18 DIn7 CMOS, 0/5V
or 0/Vext

19 V 5V Board output
voltage, to be
used only when
not operating in
insulated mode

20 GND GND Board-internal
ground

1) Please note the wiring scheme and the resulting, inverted logic below: a level of LOW means, the output is
pulled to GND and a load that is connected from V to this pin is turned on. An level of HIGH means, the output is
pulled to V and a properly wired load if turned off.

Vext and GNDext depend on opto-configuration as described below. In opto-insulated mode (opto-configuration
jumpers not set) external power supply has to be connected to these inputs. Then DIn0..DIn7 and
DOut0..DOut7 work in respect to this external power.
WARNING: When no opto-insulated mode is selected (opto-configuration jumpers are set), do NOT FEED ANY
POWER into Vext, this would cause damage to the E1803D board! In this case Vext is equal to V (5V) of the board
and GNDext is connected to boards ground GND.

Maximum current for every output is 15 mA when internally powered (non-insulated mode), here it is
recommended to use an external power supply.
Maximum current for outputs DOut0..DOut3 is 50 mA when externally powered (Vext in insulated mode).

31

Signal output lines DOut0..DOut7 operate in open collector mode and have to be wired as follows:

Here “DOutx” symbolises one of the digital outputs DOut..DOut7. V+ is either V (5V internal, non-insulated
mode) or Vext (up to 24V external, insulated mode). GND is either GND (non-insulated mode) or GNDext
(insulated mode). The internal resistor of the connected device is not allowed to have less than 490 Ohms in
order to not exceed the given current limits.
DOut0..DOut3 provide LOW signal level by default, DOut4..DOut7 provide HIGH level by default. These levels
are valid immediately on power-up of the card.

The DOut-lines make use of following logic:

Signal LED LED turned on
on output level

Default output
level on power-up

DOut0 red HIGH LOW

DOut1 red HIGH LOW

DOut2 red HIGH LOW

DOut3 red HIGH LOW

DOut4 green LOW HIGH

DOut5 green LOW HIGH

DOut6 green LOW HIGH

DOut7 green LOW HIGH

6.8.1 Marking On-The-Fly Signals

Digital inputs 0 and 1 (and optionally 2 and 3) can be used as position encoder signal inputs for marking on-the-
fly applications. Here 90 degree phase-shifted input pulses are expected signalling motion direction and
position change:

32

When these pulses are generated from a motion stage that moves the working piece, the resulting position
information is used in marking on-the-fly mode to correct the marking positions accordingly. Resulting from
that, marking will follow motion as far as available scanhead range and working area allows it.
The pulses generated out of the encoder signals have to be multiplied with a factor reflecting the resolution of
the used encoder. To set up and adjust a marking on-the-fly-system properly, following steps have to be
performed:

1. Connect encoder signals A and B to DigIn0 and DigiIn1 and configure E1803D controller for encoder
usage (either from within BeamConstruct or via programming interface as described below)

2. Mark a square without any encoder signals feed into the controller
3. When the square does not have exact size and/or is distorted, modify correction table and/or gain

settings
4. When the square has correct size, mark it again but now with a slow motion (using encoder pulses)
5. When the square is damaged (means open on one side or compressed) the on-the-fly-factor has to be

changed (set to a smaller or higher value)
6. Mark the same square again with a fast motion (using encoder pulses)
7. When the square is damaged (means open on one side or compressed) the on-the-fly-factor has to be

changed (set to a smaller or higher value)

The on-the-fly-factor controls the strength of compensation and is the relation between speed of external
device/encoder pulses and card-internal compensation calculation. When this factor is wrong, the marking
results are distorted. For a square (as recommended to be used in calibration steps above) following results are
imaginable:

The left drawing shows an over-compensated system, here the internal compensation is too strong, the factor is
too big. The right drawing shows an under-compensated set-up, here the factor is too small causing a too weak
compensation. Only when marking result is really a square, the on-the-fly-factor is correct.

When tune-flag 2 is set, a second encoder can be used for 2D marking on-the-fly applications. In this mode
digital inputs 0 and 1 (encoder inputs A1 and B1) correspond to X axis and on-the-fly factor for X direction.
Additionally digital inputs 2 and 3 (encoder inputs A2 and B2) correspond to Y axis and on-the-fly factor for Y
direction. Operation principle is the same as for 1D on-the-fly described above: the incremental values received
from the encoders for X and Y are added to the current X and Y coordinates to be marked. Procedure for

33

adjusting the encoder factor is also the same, here it is recommended to perform this operation for X and Y
movements separately and finally try both motion directions together.

6.8.2 Opto-Configuration Jumpers

Using these jumpers the operation mode for digital I/Os 0..7 can be chosen:

Opto-mode 2, both jumpers set: not galvanically insulated, internally
powered, using common ground (external ground GNDext is connected with
internal ground)

DO NOT CONNECT EXTERNAL POWER Vext!

Digital outputs: 5V (internal)

Digital inputs: 5..24V in respect to GND and GNDext

Opto-mode 1, lower jumper set: not galvanically insulated, using common
ground, external ground GNDext is connected to internal ground, external
power Vext in range 5..24V has to be applied

Digital outputs: 5..24V (Vext)

Digital inputs: 5..24V in respect to GND and GNDext

Opto-mode 0, no jumpers set: galvanically insulated (fully opto-coupled
mode), external ground GNDext is separated from internal ground, external
power Vext in range 5..24V has to be applied

Digital outputs: 5..24V (Vext))

Digital inputs: 5..24V in respect to GNDext

6.8.3 Output State LEDs

The green and red LEDs close to the connector signal the output state of the digital outputs. As shown in table
above, four outputs have default state LOW (non inverted) and four have default state HIGH (inverted). The
same is signalled by these green/red LEDs, they are on/off for output state HIGH/LOW. So please note: one of
the output LEDs turned on does NOT necessarily mean the output is at HIGH level, this depends on the output
and its corresponding default output level/output logic!

6.8.4 Input State LEDs

These 8 yellow LEDs show the state of corresponding 8 digital inputs. As long as a HIGH signal is detected on an
input, the related LED is turned on.

34

6.9 Serial Interface
This is an 8 pin connector which provides access to UART0 RS232 and RS485 connection lines.
PLEASE NOTE: both, the RS232 and the RS485 interface are connected to the same serial interface internally!
This means although there are two interface types available, only one logical serial line exists! Connecting two
signal lines to RS232 and RS485 at the same time may damage the board irreversibly!

Upper
Row Of

Pins

Signal Voltage Remarks Lower
Row Of

Pins

Signal Voltage Remarks

1 RX0 max +-28V UART0 RS232 2 TX0 +-7V UART0 RS232
3 GND 4 Do not connect!
5 RX0+ +5V UART0 RS485 6 RX0- -5V UART0 RS485
7 TX0+ +5V 8 TX0- -5V

6.10 Extension Connectors
These connectors can be used to plug additional boards which provide new functions and additional interfaces.
For a detailed description of available boards please refer below.

The two extension connectors on left hand side of the board can be used to place extension boards with
additional peripheral interfaces. The extension connectors are designed to place/remove boards from time to
time but they are not intended for constant hardware changes. So changing extension boards repeatedly and often
e.g. as permanent part of a production process is not recommended.

PLEASE NOTE: when placing a new extension board
1.check correct orientation and position of the code pin which is closed in connector
2.place the pins of the extension boards onto the extension connectors exactly
3.move down the extension board by pressing on its extension connectors gently; DO NOT PRESS THE BOARD
ITSELF BUT ONLY THE CONNECTORS!

PLEASE NOTE: When removing an extension board DO NOT pull on the extension connectors but hold both
boards on their long side directly at the PCBs edges!

Due to of the large number of pins, it is easy to plug in an extension but more difficult to pull it out. So when
removing an extension board, it is recommended to be very slow and to carefully pull each side up just a little bit
to avoid bending of the pins as they exit.

35

7 Stand-Alone Operation
E1803D scanner controller cards can be operated in stand-alone mode. In this mode all marking data are stored
on microSD-card and the board can operate without direct control of a host-PC that sends the data to be
marked. Such stand-alone marking data can be created e.g. in BeamConstruct marking software.

The names of these stand-alone files have to be in format 8.3, means the filename has to consist of eight
characters at max, followed by a file extension which consists of 3 characters. The base-stand-alone file comes
with a file-extension .EPR. In case the stand-alone file contains dynamic data, a second file with the same
filename but the extension .DAT is created (for details about dynamic stand-alone data please refer to section
“7.1 Create Stand-Alone Data with BeamConstruct”). When a stand-alone-mode of type “ioselect” is used, the
filename has to follow some specific rules too, here it typically has to be a number which corresponds to the
selection done at the digital inputs (for details about the different stand-alone modes and their behaviour
please refer to section “7.2 Stand-Alone Configuration Parameters”).

7.1 Create Stand-Alone Data with BeamConstruct
To use BeamConstruct for generation of stand-alone data for E1803D scanner controllers, the card has to be
fully configured (including all scanner, laser and pen-parameters). Next the marking data to be stored on
microSD-card have to be created. To generate stand-alone data, menu "Processing", submenu "Write Marking
Data to File" or "Send Named Marking Data" has to be selected.

First one gives the possibility to write the data to microSD card when E1803D is switched off and the microSD
card is plugged into host PC. Here it is recommended to use file extension ".EPR" for the file generated by
BeamConstruct. Next it is also recommended to always let BeamConstruct write to microSD card directly
because sometimes more than only one file is created. Direct write operation to BeamConstruct ensures all
files are available on microSD and no data can be forgotten to be copied.

The second variant allows to download the stand-alone data to the controller while it is connected and running.
Precondition for sending data to a running controller are:

• no mark operation is in progress (controller is idle)
• no stand-alone project is loaded (please refer to description of stand-alone modes and control

commands below).
• a valid name is given in style 0:/filename.epr

This operation creates the .EPR-file and all additional files on microSD card of the running controller
automatically.

PLEASE NOTE: such an .EPR-standalone file can NOT be converted back to vector data that could be edited in
BeamConstruct! Creating these files is a one-way-conversion of your projects. Thus it is recommended to save
these projects twice – once as normal .BEAMP-File which can be loaded and modified later and once as .EPR-
file which has to be used on SD-card. This also means such .EPR-files are protected so that it is possible to give
away own designs to some end-users which shall not be able to modify them.

E1803D controller supports all static data in stand-alone mode (like all kinds of static geometries, output
signals, waiting for input commands, waiting for trigger, all laser- and scanner parameters as well as elements
which set outputs directly). But it does not store the vector data using a possibly configured correction table!
To get a valid correction for stand-alone operations, the related correction file has to be saved on microSD card
and needs to be activated using parameter "corrtable0" in e1803.cfg configuration file (please refer to
description above).

Next E1803D scanner card supports dynamic content when following conditions are met:
• a text element uses one of the laser vector font families "Roman", "Script" or "Times" and it makes use

of an input element or
• a text element makes use of a TrueType font and it makes use of an input element; here any available

TrueType font can be used and several hatch-patterns can be applied but some limitations apply (only
left to right orientation, no scaling/rotation/slant/mirroring is applied to the font and only the
characters ' ', !, ", #, $, %, &, \, (,), *, +, ,, -, ., /, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, :, ;, <, =, >, ?, @, A, B, C, D, E, F, G, H, I, J, K, L, M,

36

N, O, P, Q, R, S, T, U, V, W, X, Y, Z, [, \,], ^, _, `, a, b, c, d, e, f,
g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, {, |, } and ~ can
be used, firmware version 3 or newer is required, BeamConstruct version 4.8 or newer is required); or

• a barcode element uses type "DataMatrix" or “QR” with option "Merge cells" disabled and it makes use
of an input element

• any kind of hatch and combined hatches can be applied to a barcode element, not to a text element
• marking output is neither XY-flipped nor mirrored nor rotated or slanted
• when an input element of type “Serial Number” is used, serial number counting is done according to the

settings of the related element
• when an input element of type “CSV File Data” is used, elements out of a CSV-table can be read and

used for the dynamic element:
the CSV-file itself needs to be placed on the SD-card and has to use the same name like the EPR file but
with extension CSV (so when the stand-alone file is named “data.epr”, the CSV-file needs to be named
“data.csv”), resulting from that one EPR file can handle exactly one CSV file;
supported parameters of the CSV input element are the column separator, the data column to read the
data from and the “Endless loop” option (for details please refer to the manual of BeamConstruct);
this feature requires a firmware version 13 or newer

• when any other input element is used, the contents of the text/barcode can be changed via command
“cstxt”

When these conditions are met, a text or barcode can be modified during stand-alone operation either via
stand-alone control commands as described below or via a Serial Number input element that is applied to it in
BeamConstruct. Here all serial number, time, date and formatting functions of this input element are
supported. To get a valid time in stand-alone mode, it needs to be set after boot-up via stand-alone control
commands (as described below) or a SNTP time server has to be configured to retrieve current time from an
external source (please refer to description e1803.cfg parameters above).

7.2 Stand-Alone Configuration Parameters
Within e1803.cfg configuration file of E1803D scanner controller one of the following stand-alone operation
modes can be selected via the configuration parameter "standalone":

standalone=off

Stand-alone mode is fully disabled, the card acts as normal host-PC-controlled device and all .epr-files on the
SD-card are ignored. Digital outputs are not toggled since no stand-alone operational states have to be
signalised here (please refer next section).

standalone=dotmark

This is a special stand-alone marking mode where E1803D controller card acts as dot matrix marker. It is
available in firmware versions 5 or earlier only. For details please refer section “8 Matrix Laser Dot Marking
Mode“ below.

standalone=auto

Stand-alone mode is enabled, a file specified by and additional parameter "autofile" is loaded and prepared for
marking. Marking of this file is started only when an external trigger signal is detected. The file itself has to be
specified via additional configuration parameter that gives the filename of the stand-alone file to be loaded. As
an example a parameter: "autofile=0:/myfile.epr" would try to load the file "myfile.epr" from SD-card
and prepare it for marking. In this mode the digital outputs are toggled as described in next section.

standalone=loop

This is the same like mode "auto" described above but using "loop" E1803D controller does NOT wait for an
external trigger signal! So when no trigger points are set in stand-alone datafile itself, in this mode marking
would be done in an infinite loop, repeating the given "autofile" again and again.

standalone=haltedloop

37

This is the same like mode "loop" described above, but marking does not start immediately. By default the
controller is in state “halt” until the ExtStart input is set to HIGH level. Marking continues only as long this input
stays at HIGH. When it goes back to LOW, marking is continued until the laser is turned off the next time and it
is halted again. Next time ExtStart goes to HIGH, marking continues at the position where it was halted before.
In this mode the timeout-parameter “haltedlooptimeout” can be used.

standalone=iohaltedloop

This mode is a combination out of "haltedloop" described above and “ioselect” described below (please refer
there for usage details). In this mode a project can be selected via digital inputs but it is started immediately and
marked in an endless loop as long as ExtStart input is HIGH (so the level at ExtStart is checked, not the rising
edge of an applied signal). When a different project is selected by applying a different input pattern at DIn
digital inputs, the current project is cancelled and the new one is started in a loop again.
This mode requires firmware version 2 or newer.
In this mode the timeout-parameter “haltedlooptimeout” can be used.

standalone=ioselect

This mode makes use of the digital interface (please refer above). Here it is possible to select one of 256 stand-
alone marking jobs via a signal the digital inputs. The number that results out of the input pattern of the digital
input lines specifies the filename of the marking job that has to be loaded from SD card:

Selected input(s) Stand-alone file loaded from SD-card

All inputs set to LOW (not recommended to be used) 0.epr

DIn0 set to HIGH 1.epr

DIn1 set to HIGH 2.epr

DIn0 and DIn1 set to HIGH 3.epr

DIn2 set to HIGH 4.epr

DIn0 and DIn2 set to HIGH 5.epr

DIn1 and DIn2 set to HIGH 6.epr

DIn0, DIn1 and DIn2 set to HIGH 7.epr

DIn3 set to HIGH 8.epr

… …

DIn4 set to HIGH 16.epr

… …

DIn5 set to HIGH 32.epr

… …

DIn6 set to HIGH 64.epr

… …

DIn7 set to HIGH 128.epr

… …

All inputs set to high 255.epr

PLEASE NOTE: 0.epr (no inputs set to HIGH) can be used but it is not recommended to do that. This value
should be reserved for "no job active" to set the card into an inactive mode also in stand-alone operational
mode. This may be necessary e.g. when new project data are downloaded to the controller without removing
the SD-card.

Marking of a IO-selected job is started by external trigger signal (ExtStart input). When the input pattern at
DIn0..DIn7 changes during marking, the currently running operation is continued and the other stand-alone job

38

is loaded after marking operation has finished. In this mode the digital outputs are toggled as described in next
section.

In stand-alone mode “ioselect” or “idxselect” .EPR-files are loaded from microSD card as soon as a new input
pattern is detected at digital inputs or as soon as a new index is selected with command “clepr”. Depending on
the size of the .EPR file and the speed of the microSD card, this may take a time that is too long for high-speed
applications. Thus it is possible to operate such projects from controller's RAM completely: in e1803.cfg the
numbers of the files to be loaded have to be specified with parameter “iobuff”, it can be used up to 20 times and
expects the number of the file (so a line “iobuff=3” would be responsible for pre-loading file “0:/3.epr”). File
“0.epr” can not be preloaded by this command.

Now these files are loaded into RAM and switching from one to an other is done much faster since toggling
between them is done controller-internal and no more disk-operations are necessary for that.
PLEASE NOTE: when too much too large .EPR files are selected for preloading, this may exceed the available
memory on card. This is signalled by the Error LED turned on and an appropriate message is stored in log buffer.

standalone=idxselect

This mode works exactly like the mode “ioselect” (described above), but it does not occupy any digital inputs.
Instead of that, loading of a file can be done via an index number and the command clepr. There the number of
the file to be loaded has to be given. For a full description of all functions and features of mode “idxselect”,
please refer the “ioselect” description above.
This stand-alone mode requires a firmware version 8 or newer.

iolatch=1

This option can be enabled for one of the digital-input-controlled stand-alone modes “ioselect”, “idxselect” and
“iohaltedloop”. When this option is set to 0 or when it does not exist in e1803.cfg, the digital input bitpattern at
DIn0..DIn7 is used as new input value as soon as it is detected. When it is enabled, DIn7 is used as latch-bit.
Then the digital input bitpattern at DIn0..DIn6 is used only when DIn7 is set to HIGH. So a proper method of
selecting a digital input bitpattern with latch enabled would be:

• ensure DIn7 is at LOW
• apply the desired bitpattern at DIn0..DIn6
• wait for the maximum time the input bits may need to settle (depends on the external hardware and its

capabilities)
• set DIn7 to HIGH
• wait until DOut0 goes to LOW
• wait until DOut1 goes back to HIGH (when a valid bitpattern was applied that corresponds to an

existing EPR file) or until loading timeout has elapsed (when a bitpattern has been applied where no
EPR file exists for

• set DIn7 to LOW
So as long as DIn7 is at low, state-changes at DIn0..DIn6 are ignored and the last detected bitpattern is used. In
this mode only 127 different input bitpatterns are possible as DIn7 is used as latch bit.
This function is available in firmware versions 11 or newer.

7.3 Stand-Alone Control
The current stand-alone operational state is signalised via digital outputs:

DOut0 – ready for marking – this output goes to HIGH as soon as a stand-alone job could be found on disk, was
loaded successfully and is ready for marking. So external start signal should not be given until this output is
HIGH. When a new stand-alone file is selected (e.g. via digital inputs in "ioselect"-mode) this output goes to
LOW. It is switched back to HIGH only when the new file could be loaded successfully too.
This signal can be mapped to a different hardware output using configuration parameter tunereadyout and
the related tune-flag.

DOut1 – marking active – as long as this output is HIGH, a marking operation is in progress. When a different
stand-alone file is selected (e.g. via digital inputs) as long as this output is HIGH, marking is continued and the
new file is NOT loaded. Once the current marking operation is completed, the output goes to LOW. After that

39

the board continues with current marking data (when no new ones have been selected), or it tries to load new
ones (when a new file was selected).
Please note: in firmware versions prior to v3 in stand-alone modes “haltedloop” and “iohaltedloop” this
signal is not used since the user had full control over the marking process via the ExtStart input. So in case of
these modes the logic is: when both, DOut0 and ExtStart are at HIGH, the controller is marking. Starting with
firmware version 3 the DOut1 signal is used in same way as for all other stand-alone modes.
This signal can be mapped to a different hardware output using configuration parameter tunemarkout and
the related tune-flag.

40

8 Matrix Laser Dot Marking Mode
Please note all functions described in this chapter are deprecated. They are available only for firmware version
5 or older. Before using these functions in new products, please contact HALaser Systems!

The E1803D controller card can be operated in a special mode where it does not make use of XY2-100
interface but acts as dot marker for matrix marking applications. Here a matrix laser, a dot peen or an other
matrix printing device can be used. The dots are controlled via digital outputs turning the related dot on and off:

The controller works in stand-alone mode with no laser marking software connected to it. The objects to be
marked have to be moved (2, from right to left in image above) and the movement information is feed into the
controllers encoder inputs A1 and B1 of digital interface connector (for description please refer to section
6.8.1). Depending on the current position, the related dot-outputs are turned on and off marking one column on
every distance step (3 symbolises the dot marking device in image above, red dots are lasers which are firing for
the current column). This way the motion of the working piece forms up to two separate lines of text to be
marked (1 in image).

8.1 Dot Mode Configuration Parameters
Within e1803.cfg configuration file of E1803D controller card the dot marking mode has to be configured by
using different parameters:

Parameter Description Example
standalone When set to “dotmark” this parameter enables the dot

matrix marking mode. This is mandatory to use the
following parameters, elsewhere they do not have any
effect on the operation of the card.

standalone=dotmark
Enables the dot matrix

marker mode of E1803D

dotfont0 Specifies which font has to be used. The font size specifies
how much of the max. 13 dots are used. All the available
fonts are stored on microSD-card in sub-folder “fonts”. Own
fonts can be added to this, please contact HALaser Systems
for details.
This parameter is mandatory, for a single line of text it
specifies the font for this line, when two lines of text have
to be marked, it specifies the font for the upper line.

dotfont0=0:/fonts/
mono7.dfn

load the 7 pixels high, mono-
spaced font “mono7.dfn” out

of the “fonts”-folder of
microSD-card

dotfont1 Specifies which font has to be used for the (optional)
second line.
This parameter is optional and has to be set only when two
lines of text have to be marked below of each other. It
specifies the font for the lower line.
When the second line is used, parameter “dotfont1y” has to
be set too.

dotfont1=0:/fonts/
straig6.dfn

load the 6 pixels high, mono-
spaced font “mono6.dfn” out

of the “fonts”-folder of
microSD-card

dotfont1y When two lines of text are marked this parameter specifies
the y-offset of the second line (in unit dots). Using it vertical
the position of the lower text line has to be set.

dotfont1y=7
sets an Y-position of 7, means

the upper border of the
second (optional) text line will

start at Dot7 output
dotdist This parameter specifies the horizontal distance between

two columns of dots. The value given here is in unit
“increments” of connected encoder.
When the value is positive, the encoder has to be

dotdist=7500
starts a new column of dots

whenever 7500 encoder
increments have elapsed

41

connected in a way where it counts to positive direction. In
this case the text is marked from left to right, motion has to
be done from right to left.
When the value is negative, the encoder has to be
connected in a way where it counts to negative direction. In
this case the text is marked in reverse direction from right
to left (mirrored in horizontal direction) and the motion of
the working pieces need to have a suitable movement
direction in order to have the expected results and no
mirrored texts.
The encoder counting direction has to fit to the
configuration. When it works in wrong direction, only the
first column of a text is marked, then nothing happens for a
very long time. In this case it is necessary to exchange the
two encoder lines connected to A1 and B1 in order to
correct the counting direction.

dottime Specifies how long the dots have to be turned on at
maximum. The value has to be given in unit nanoseconds
and has a resolution of 500 nsec. When no dot-time is
specified, turned on dots stay on until the motion has made
enough progress to switch on the next row of dots. So in
this case when the motion stops, the already turned on dots
stay on endless.

dottime=20000
turn off the dots latest after

20 usec

8.2 Dot Mode Hardware Interface
In dot matrix marking mode the laser connector is used to control the single dots. As soon as stand-alone mode
“dotmark” is enabled, pinout of this connector is different:

Upper
Row

Of
Pins

Signal Voltage Remarks Lower
Row

Of
Pins

Signal Voltage Remarks

1 Dot0 CMOS, 0/5V,
max 8 mA

2 GND GND

3 Dot1 CMOS, 0/5V,
max 8 mA

4

5 Dot2 CMOS, 0/5V,
max 8 mA

6 5V 5V Output

7 Dot3 CMOS, 0/5V,
max 8 mA

8 Dot10 CMOS, 0/5V,
max 8 mA

9 Dot4 CMOS, 0/5V,
max 8 mA

10

11 Dot5 CMOS, 0/5V,
max 8 mA

12 Do not connect!

13 Dot6 CMOS, 0/5V,
max 8 mA

14 Do not connect!

15 Dot7 CMOS, 0/5V,
max 8 mA

16 ExtStart CMOS, 0/5V Input control
signal

17 Dot8 CMOS, 0/5V,
max 8 mA

18 5V 5V

19 Dot9 CMOS, 0/5V,
max 14 mA

20 Connected to
pin 21

21 Connected to pin
20

22 Dot11 CMOS, 0/5V,
max 14 mA

23 GND GND 24 ExtStop CMOS, 0/5V Input control
signal

25 5V 5V Output 26 Dot12 CMOS, 0/5V,
max 14 mA

42

Dot0 is always the uppermost dot. Usage of all other dots depends on the height of the used font. So when a
font with a size of 8 is chosen, the dots Dot0..Dot7 are used.
The dot-outputs are switched to HIGH signal whenever a dot has to be marked. This behaviour can be changed
by setting the “tune”-parameter to value 8 (for details please refer section 6.5 above), then they are inverted
and are set to HIGH when they are off.
The ExtStart input is used to start marking of one line of predefined text.
Dots can be toggled with a maximum frequency of 2 MHz.

8.3 Dot Mode Control
The dot matrix marking mode is a stand-alone operation mode which can be controlled from outside easily.
After proper configuration of the related parameters in e1803.cfg, data to be marked can be sent to the card via
commands “cdtl0” and optional “cdtl1” (for a more detailed description of this command interface please
refer to section 15.2 below). This command can be used to enqueue several texts in advance. On every rising
edge on ExtStart input output of the next text in queue is started according to the current encoder position.

During operation the current dot mode stand-alone operational state is signalised via digital outputs:

DOut0 – ready for marking – this output goes to HIGH as soon as some text was received which can be marked
in dot mode. So external start signal to should not be given until this output is HIGH. When no more data are
available to be marked or when marking is currently in progress, this output goes to LOW.
When dot mark mode is configured to use one line of text only (parameter dotfont1 not set), the controller
becomes ready for marking as soon as at least one text is available (to be set with command “cdtl0”).
When dot mark mode works using two lines of text (parameter dotfont1 set), the controller always requires
pairs of data, means it becomes ready for marking only when text for two lines is available (to be set with both
commands “cdtl0” and “cdtl1”).

DOut1 – marking active – as long as this output is HIGH, a marking operation is in progress. During this time it
is still possible to feed new marking data via commands “cdtl0” and “cdtl1”, this does not influence the
current operation.

43

9 Multi-IO Extension Board
This board is deprecated and should not be used any more.

The controller card can be extended by the Multi-IO board which utilitises the extension connector as
described in section “6 Board And Connectors”.
To operate the controller with the Multi-IO Extension Board, firmware version 4 or newer is needed.

9.1 Board Connectors

The E1803D Multi-IO Extension Board provides following connectors and interfaces:
1. Multi-IO-connector offering different signals and interfaces including a secondary XY2-100(E)/XY2-

200(E)/XY3-100 interface, analogue inputs, RS232/RS485 serial output
2. Code pin for proper placement of extension board on E1803D controller card

9.2 Multi-IO Interface
The 26 pin connector provides signals and inputs to be used for different purposes:

Upper
Row

Of
Pins

Signal Voltage Remarks Lower
Row

Of
Pins

Signal Voltage Remarks

1 CLK- Secondary head,
XY2-100-
compatible output
signals

2 CLK+ Secondary head,
XY2-100-
compatible output
signals

3 SYNC- 4 SYNC+
5 X- 6 X+
7 Y- 8 Y+
9 Do not connect! 10 Do not connect!
11 GNDAIn GND 12 bit analogue

inputs
12 AIn0 0..5V 12 bit analogue

inputs13 AIn1 0..5V 14 AIn2 0..5V
15 Do not connect! 16 Do not connect!
17 Do not connect! 18 Do not connect!
19 RX1 12V UART1 RS232 20 TX1 12V UART1 RS232
21 GND 22 GND
23 RX1+ 5V

UART1 RS485
24 RX1- 5V

UART1 RS485
25 TX1+ 5V 26 TX1- 5V

44

The first 8 pins of the 26 pin connector provide signals to be used to control up to two galvos of a scanhead.
These signals are fully parallel to the ones from XY2-100 interface of E1803D main board and can be used for
secondary head applications where two scanheads work in parallel. With a flat wire belt that makes use of
these first 8 pins only, a direct connection with a standard D-SUB25 connector can be made:

CLK-
SYNC-

X-
Y-

CLK+
SYNC+
X+
Y+

The pins 11 to 14 offer three analogue measurement inputs AIn0 .. AIn2 which can be operated in respect to
GNDAIn and work with a voltage range of 0..5V. This range is converted to a 12 bit digital value in range 1..4095
and can be read out of a connected application or can be used to perform different automated tasks.
PLEASE NOTE: under no circumstances apply a voltage higher than 5V to any of these inputs, this may damage
the complete scanner controller card irreversibly!

The last 8 pins provide access to UART1 RS232 and RS485 connection lines.
PLEASE NOTE: both, the RS232 and the RS485 interface are connected to the same serial interface internally!
This means although there are two interface types available, only one logical serial line exists! Connecting two
signal lines to RS232 and RS485 at the same time may damage the complete scanner controller card
irreversibly!

45

10 Intelli-IO Extension Board
The controller card can be extended by the Intelli-IO Extension board which utilises the extension connector as
described in section “6 Board And Connectors”.
To operate the controller with the Intelli-IO Extension Board, firmware version 5 or newer is needed.
Comparing to the Multi-IO Extension Board this one offers different types of IO and also provides the
possibility for software customisation according to customers special needs. Due to flexibility it can be
operated in different modes and therefore used for different purposes.

10.1 Board Connectors

The E1803D Intelli-IO Extension Board provides following connectors and interfaces:
1. IO-connector offering different signals and interfaces as described below including digital inputs,

digital outputs and analogue inputs
2. Code pin for proper placement of extension board on E1803D controller card

10.2 Intelli-IO Interface in IO mode
When operated in IO-mode, the 20 pin connector provides following signals and inputs:

Lower
Row

Of
Pins

Signal Voltage Remarks Upper
Row

Of
Pins

Signal Voltage Remarks

1 DOut0 5V
Digital outputs,
second 8 bit port

2 DOut1 5V
Digital outputs,
second 8 bit port

3 DOut2 5V 4 DOut3 5V
5 DOut4 5V 6 DOut5 5V
7 DOut6 5V 8 DOut7 5V
9 DIn0 5V Digital inputs,

second 8 bit port (6
bits used)

10 DIn1 5V Digital inputs,
second 8 bit port
(6 bits used)

11 DIn2 5V 12 DIn3 5V
13 DIn4 5V 14 DIn5 5V
15 GNDAIn GND 12 bit analogue

inputs
16 AIn0 0..5V 12 bit analogue

inputs17 AIn1 0..5V 18 AIn2 0..5V
19 5V 5V Output 20 GND GND

46

The pins 1 to 8 provide 8 general purpose digital outputs. Maximum current to be pulled out of each output is
20 mA. It is recommended to supply power to E1803D controller via 3pin screw connector but not via USB
when this extension board is used.
The pins 9 to 14 are digital general purpose input pins. They are low-active, means to signal a logical “1”, they
have to be pulled to ground (GND).

The pins 15 to 18 offer three analogue measurement inputs AIn0 .. AIn2 which can be operated in respect to
GNDAIn and work with a voltage range of 0..5V. This range is converted to a 12 bit digital value in range 1..4095
and can be read out of a connected application or can be used to perform different automated tasks.
PLEASE NOTE: under no circumstances apply a voltage higher than 5V to any of these inputs, this may damage
the complete scanner controller card irreversibly!

This extension board makes use of an own MCU (Microcontroller Unit) which handles all digital IOs and also
has access to analogue inputs AIn0 and AIn1. This MCU can work fully parallel to the main scanner controller
card and therefore is suitable for special, customised control applications. To get more information about such
applications and to discuss your requirements, please contact HALaser Systems.

10.3 Intelli-IO Interface in motion mode
The hardware described within this section is designed to control motors. Motions caused by these motors may
effect a person's health or may otherwise cause damage. Prior to installation and operation compliance with all
relevant safety regulations including additional hardware-controlled safety measures has to be secured. The
client shall solely be responsible to strictly comply with all applicable and relevant safety
regulations regarding installation and operation of the system at any time.

When operated in motion-mode, the extension can be used to drive up to four stepper motor axes via
step/direction signals. Here the 20 pin connector provides following signals and inputs:

Lower
Row

Of
Pins

Signal Voltage Remarks Upper
Row

Of
Pins

Signal Voltage Remarks

1 Step0 5V
Stepper pulse
output signals

2 Dir0 5V
Stepper motor
direction output
signals

3 Step1 5V 4 Dir1 5V
5 Step2 5V 6 Dir2 5V
7 Step3 5V 8 Dir3 5V
9 Ref0 5V

Reference inputs
10 Ref1 5V

Reference inputs
11 Ref2 5V 12 Ref3 5V
13 Do not connect! 14 Do not connect!
15 GNDAIn GND 12 bit analogue

inputs
16 AIn0 0..5V 12 bit analogue

inputs17 AIn1 0..5V 18 AIn2 0..5V
19 5V 5V 20 GND GND

The pins 1 to 8 provide the stepper motor control signals for axes 0..3 (step/direction signals to be used with a
separate, external power driver). Maximum current to be pulled out of each output is 20 mA. It is recommended
to supply power to E1803D controller via 3pin screw connector but not via USB when the Intelli-IO extension
board is used.
The pins 9 to 12 are input pins for axes 0..3 to be used with the reference/homing position. They are low-active,
means to signal a “switch was hit”, they have to be pulled to ground (GND).

The pins 15 to 18 offer three analogue measurement inputs AIn0 .. AIn2 which can be operated in respect to
GNDAIn and work with a voltage range of 0..5V. This range is converted to a 12 bit digital value in range 1..4095
and can be read out of a connected application or can be used to perform different automated tasks.
PLEASE NOTE: under no circumstances apply a voltage higher than 5V to any of these inputs, this may damage
the complete scanner controller card irreversibly!

47

11 NX-02 Extension Board
While the controller already generates scanner signals for all types of parallel scanner protocols (such as XY2-
100 or XY3-100), using the NX-02 Extension Board it is possible to drive scanheads that make use of serial
scanner protocols (such as NX-02 and compatible). The controller card can be extended by the NX-02 board
which utilitises the extension connector as described in section “6 Board And Connectors”.
To operate the controller with the NX-02 Extension Board, firmware version 17 or newer is needed.

11.1 Board Connectors

The E1803D NX-02 Extension Board provides following connectors and interfaces:
1. serial NX-02 protocol connector towards the scanhead
2. Analogue input signal connector

11.2 NX-02 Interface
The 10 pin connector provides the serial scanhead control signals:

Lower
Row

Of
Pins

Signal Remarks Upper
Row

Of
Pins

Signal Remarks

1 DATA- Connect with input of scanhead 2 DATA+ Connect with input of scanhead
3

Do not connect!

4 GND
5 6 GND

7 8 RET+
Connect with backchannel of
scanhead

9 RET-
Connect with backchannel of
scanhead

10 Do not connect!

Depending on the exact wiring of the used scanhead, it may be possible, an adaptor cable is needed. But for
most NX-02 and compatible scanheads, a simple 1:1 connection from this 10-pin IDC connector to a D-SUB9-
connector should be suitable (via direct flatbelt-cable connection). For details please refer to the description
and pinout of the used scanhead.

48

11.3 Analogue Input Interface
This connector provides the following inputs:

Lower
Row

Of
Pins

Signal Voltage Remarks Upper
Row

Of
Pins

Signal Voltage Remarks

1 AIn0 0..5V
12 bit analogue
inputs

2 GNDAIn GND
3 AIn1 0..5V 3 GNDAIn GND
5 AIn2 0..5V 4 GNDAIn GND

The pins 1,3 and offer three analogue measurement inputs AIn0 .. AIn2 which can be operated in respect to
GNDAIn and work with a voltage range of 0..5V. This range is converted to a 12 bit digital value in range 1..4095
and can be read out of a connected application or can be used to perform different automated tasks.
PLEASE NOTE: under no circumstances apply a voltage higher than 5V to any of these inputs, this may damage
the complete scanner controller card irreversibly!

49

12 E1803dock Extension Board
The E1803 dock is a full-size expansion board which sits on the very top of the controller card and acts as some
kind of breakout-board. It does not occupy the extension connector but makes use of laser and digital interface
– which itself are passed through and are available on top of the E1803dock. This board is available in different
variants which are specialised for specific laser types each. When using a suitable E1803dock, connection
between E1803D and laser is made simple and easy as only some simple 1:1 connections with standard cables
are required. Thus E1803dock allows easy connection of the E1803D controller to lasers without the need to
manufacture special cables. Following all available E1803Dock variants are described together with the
E1803D signal names and where they can be found at the laser-specific connectors.

PLEASE NOTE: prior to using the E1803dock, please ensure the pinout of the connectors (as described below)
really fit to your specific variant of your used laser. Elsewhere irreversible damage are possible at laser and/or
scanner controller card.

PLEASE NOTE: when using the pass-through laser and/or digital interfaces in parallel to the laser-specific
connectors, you need to ensure they are not used twice, out of both connectors. This may result in an undefined
and unwanted behaviour otherwise as they work parallel and can’t be switched separately. When a parallel
usage is intended, please double-check the current consumption of connected devices as the total current that
can be provided by these lines does not double but is the same total value for two connections then. Exceeding
the total maximum allowed current of a E1803D-signal may cause an irreversible damage to the controller
otherwise.

12.1 E1803dock MOPA

This variant of the E1803dock can be used with most MOPA/fiber lasers such as IPG YLP interface types G
(without SPI serial interface and pin 12 alarm signal), E (without APD indexing), D, D1, B, B1, MaxPhotonics
MFP, JPT YDFLP, Raycus RFL-PMX, Raycus RFL-PQB and compatible laser types.

Starting with hardware version 1.2, the E1803dock MOPA also supports laser types such as IPG YLM, Raycus
RFL-QCW and compatible types.

Connection between E1803dock and laser is done mainly via a 1:1 D-SUB25 connection:

1. Screwdriver holes for access to the screw-terminal of the underlying E1803D

50

2. dock-connectors to underlying E1803D which connect with digital, laser and serial interface

3. Laser interface pass-through, for pinout please refer to section “6.7 Laser Signals”

4. Digital interface pass-through, for pinout please refer to section “6.8 Digital Interface” and to jumper
description below

5. D-SUB25 connector for direct connection to laser. A connection can be established using a standard
1:1 D-SUB-cable. This connector provides the following pinout:
Pin Description Pin Description

1 LP8_0 laser power signal, CMOS, max 8mA 14 GND

2 LP8_1 laser power signal, CMOS, max 8mA 15 Not connected

3 LP8_2 laser power signal, CMOS, max 8mA 16 DIn6 laser alarm pin 16, available at DIn5 only
when jumper is set to „ERR16“ (refer to
description below)

4 LP8_3 laser power signal, CMOS, max 8mA 17 Not connected

5 LP8_4 laser power signal, CMOS, max 8mA 18 MO main oscillator signal, CMOS, max 8mA

6 LP8_5 laser power signal, CMOS, max 8mA 19 LaserGate power amplifier signal, CMOS, max
14mA

7 LP8_6 laser power signal, CMOS, max 8mA 20 LaserA 5V pulse repetitive signal, CMOS, max
14mA

8 LP8_7 laser power signal, CMOS, max 8mA 21 DIn7 laser alarm pin 21, available at DIn7 only
when jumper is set to „ERR21“ (refer to
description below)

9 LP8 Latch laser power latch, CMOS, max 8mA 22 LaserB used to switch the pilot laser, CMOS,
max 14mA

10 GND 23 Emergency input, connected to screw
connector (7) and has to be pulled to HIGH for
different laser types to enable operation

11 DIn5 laser alarm pin 11, available at DIn5 only
when jumper is set to „ERR11“ (refer to
description below)

24 Not connected

12 Not connected 25 Not connected

13 Not connected

6. Jumper to configure laser alarm lines 12 (hardware version 1.2 and newer), 11, 16 and 21. When they
are set to “ERRxx” position (jumper set to left), the related error signal is connected with DInx input as
described above.
When at least one of the jumpers is set to “ERRxx”-position, the digital interface needs to be configured
to opto-mode 1 or opto-mode 2 (please refer to description in section “6.8.2 Opto-Configuration
Jumpers” above). In this case the related digital input is no longer available.
For jumpers that are set to position “DInx” (jumper set to right), the related digital input is available but
the laser error can no longer be read.

7. Emergency input screw connector:

EMRG GND 5V

“EMRG” is connected to pin 23 of the MOPA D-SUB connector (5) and can be used to provide a HIGH-
signal to the laser in order to enable it. Using this an emergency enable/off function can be
implemented.
“5V” is an output which provides 5V from the controller card. It can be used e.g. to apply a HIGH-signal
to the EMRG-input, possibly via a relay contact. Please note: The “5V” pin of this screw connector is not

51

allowed to be used for supplying power to any other peripherals.

8. D-SUB25 connector for direct connection to laser (available only in hardware variant 1.2 or newer). A
connection can be established using a standard 1:1 D-SUB-cable. This connector provides the following
pinout:
Pin Description Pin Description

1 Not connected 14 Shield

2 Not connected 15 Not connected

3 Not connected 16 DIn6 laser alarm pin 16, available at DIn5 only
when jumper is set to „ERR16“ (refer to
description below)

4 Not connected 17 LaserGate power amplifier signal, CMOS, max
14mA

5 Not connected 18 Not connected

6 Not connected 19 DIn7 laser ready pin, available at DIn7 only
when jumper is set to „RDY“ (refer to
description below)

7 MO main oscillator signal, CMOS, max 8mA 20 Not connected

8 AOut0 0..4V analogue power control, max 15
mA; Please note: it has to be ensured on
software side to not to apply more than 4V
here. This is done in BeamConstruct
automatically when laser type „IPG (MO,
AOut0)“ is configured. Out of own applications
when calling E1803_ana_write() a
maximum value a of 26213 is allowed.

21 LaserB used to switch the pilot laser, CMOS,
max 14mA

9 GND 22 Not connected

10 Not connected 23 Not connected

11 Not connected 24 Not connected

12 Not connected 25 Not connected

13 Not connected

9. RS232 interface (available only in hardware variant 1.2 or newer), this is a pass-through of the RS232-
signal of the on-board serial interface as described at “6.9 Serial Interface” which can be used for
communication with the laser. The D-SUB9 connector provides the following pinout:
Pin Description Pin Description

1 Not connected 6 Not connected

2 RX (to be connected with TX on laser side) 7 Not connected

3 TX (to be connected with RX on laser side) 8 Not connected

4 Not connected 9 Not connected

5 GND

10. mounting holes for HALdrive XY3-100 to analogue converter, can be used for placing a HALdrive
converter board

12.2 E1803dock YLM
This variant of the E1803dock can be used with analogue controlled MOPA/fiber lasers such as IPG YLM,
Raycus RFL-QCW and compatible types. Starting with hardware version 1.2, the functionalities of the
E1803dock YLM are contained in “12.1 E1803dock MOPA“ completely.

Connection between E1803dock and laser is done mainly via a 1:1 D-SUB25 connection (laser control signals)
and a 1:1 D-SUB9 connection (RS232 communication):

52

1. Screwdriver holes for access to the screw-terminal of the underlying E1803D
2. dock-connectors to underlying E1803D which connect with digital, laser and serial interface
3. Laser interface pass-through, for pinout please refer to section “6.7 Laser Signals”
4. Digital interface pass-through, for pinout please refer to section “6.8 Digital Interface” and to jumper

description below
5. D-SUB25 connector for direct connection to laser. A connection can be established using a standard

1:1 D-SUB-cable. This connector provides the following pinout:
Pin Description Pin Description

1 Not connected 14 Shield

2 Not connected 15 Not connected

3 Not connected 16 DIn6 laser alarm pin 16, available at DIn5 only
when jumper is set to „ERR16“ (refer to
description below)

4 Not connected 17 LaserGate power amplifier signal, CMOS, max
14mA

5 Not connected 18 Not connected

6 Not connected 19 DIn7 laser ready pin, available at DIn7 only
when jumper is set to „RDY“ (refer to
description below)

7 MO main oscillator signal, CMOS, max 8mA 20 Not connected

8 AOut0 0..4V analogue power control, max 15
mA; Please note: it has to be ensured on
software side to not to apply more than 4V
here. This is done in BeamConstruct
automatically when laser type „IPG (MO,
AOut0)“ is configured. Out of own applications
when calling E1803_ana_write() a
maximum value a of 26213 is allowed.

21 LaserB used to switch the pilot laser, CMOS,
max 14mA

9 GND 22 Not connected

10 Not connected 23 Not connected

11 Not connected 24 Not connected

12 Not connected 25 Not connected

13 Not connected

53

6. Jumper to configure laser alarm and ready lines.
The upper jumper is not used and always has to be set to “DI5”.
When the middle jumper is set to “ERR16” position (jumper set to left), the laser error signal from pin
16 is connected with DIn6 input as described above.
When the lower jumper is set to “RDY” position (jumper set to left), the laser ready signal from pin 19 is
connected with DIn6 input as described above.
When at least one of the jumpers is NOT set to “DIx” (right position), the digital interface needs to be
configured to opto-mode 1 or opto-mode 2 (please refer to description in section “6.8.2 Opto-
Configuration Jumpers” above). In this case the related digital input is no longer available.
For jumpers that are set to position “DIx” (jumper set to right), the related digital input is available but
the laser error/ready can no longer be read.

7. RS232 interface, this is a pass-through of the RS232-signal of the on-board serial interface as
described at “6.9 Serial Interface” which is used for communication with the laser. The D-SUB9
connector provides the following pinout:
Pin Description Pin Description

1 GND 6 Not connected

2 Not connected 7 Not connected

3 RX (to be connected with TX on laser side) 8 Not connected

4 TX (to be connected with RX on laser side) 9 Not connected

5 Not connected

8. mounting holes for HALdrive XY3-100 to analogue converter, can be used for placing a HALdrive
converter board

12.3 E1803dock SPI
This variant of the E1803dock can be used with SPI G4 fiber laser / TRUMPF TruPulse nano and compatible
types that also make use of a compatible connector. Connection between E1803dock and laser is done mainly
via a 1:1 68-pin SCSI-type connection:

1. Screwdriver holes for access to the screw-terminal of the underlying E1803D

2. dock-connectors to underlying E1803D which connect with digital, laser and serial interface

54

3. Laser interface pass-through, for pinout please refer to section “6.7 Laser Signals”

4. Digital interface pass-through, for pinout please refer to section “6.8 Digital Interface” and to jumper
description below

5. 68pin Mini D Ribbon SCSI connector for direct connection to laser. A connection can be established
using a standard 1:1 cable. This connector provides the following pinout:
Pin Description Pin Description

1 Not connected 35 Not connected

2 Not connected 36 GND

3 Not connected 37 GND

4 Not connected 38 Not connected

5 LaserGate power amplifier signal, CMOS, max
14mA

39 GND

6 LaserB used to switch the pilot laser, CMOS,
max 14mA

40 GND

7 MO laser global enable signal, CMOS, max
8mA

41 GND

8 DIn6 laser temperature alarm pin 16, available
at DIn5 only when jumper is set to „ERR16“ (6,
refer to description below)

42 GND

9 DIn7 laser general alarm pin, available at DIn7
only when jumper is set to „ERR21“ (6, refer to
description below)

43 GND

10 DIn5 laser system fault pin 11, available at
DIn5 only when jumper is set to „ERR11“ (6,
refer to description below)

44 GND

11 Not connected 45 GND

12 Not connected 46 GND

13 LaserA PWM signal 47 GND

14 Not connected 48 GND

15 Disable input, connected to screw connector
(7) and has to be pulled to LOW to enable
operation

49 GND

16 Not connected 50 GND

17 LP8_0 laser power signal, CMOS, max 8mA 51 LP8_4 laser power signal, CMOS, max 8mA

18 LP8_1 laser power signal, CMOS, max 8mA 52 LP8_5 laser power signal, CMOS, max 8mA

19 LP8_2 laser power signal, CMOS, max 8mA 53 LP8_6 laser power signal, CMOS, max 8mA

20 LP8_3 laser power signal, CMOS, max 8mA 54 LP8_7 laser power signal, CMOS, max 8mA

21 Pulse/CW operation mode, can be set to LOW
or HIGH signal via jumpers (8, refer to
description below)

55 GND

22 Not connected 56 GND

23 LP8 Latch laser power latch, CMOS, max 8mA 57 connected

24 Not connected 58 GND

25 RS232 RX 59 GND

26 RS232 TX 60 GND

27 Not connected 61 Not connected

28 GND 62 Not connected

29 GND 63 Not connected

30 GND 64 AOut1 0..10V analogue simmer control, max
15 mA

55

Pin Description Pin Description

31 GND 65 AOut0 0..10V analogue power control, max 15
mA

32 GND 66 Not connected

33 Not connected 67 Not connected

34 Not connected 68 Not connected
For details about the connector type used, here, please refer to the next section below

6. Jumper to configure laser alarms. When they are set to “ERRxx” position (jumper set to left), the
related alarm/failure signal is connected with DInx input as described above.
When at least one of the jumpers is set to “ERRxx”-position, the digital interface needs to be configured
to opto-mode 1 or opto-mode 2 (please refer to description in section “6.8.2 Opto-Configuration
Jumpers” above). In this case the related digital input is no longer available.
For jumpers that are set to position “DInx” (jumper set to right), the related digital input is available but
the laser error can no longer be read.

7. Disable input screw connector:

DIS GND 5V

 Here “DIS” is connected to pin 15 of the 68-pin connector and can be used to provide a HIGH-signal to
the laser in order to disable it. When the disable functionality is implemented an other way, it is also
possible to directly connect the “GND” pin to “DIS”, then the laser is always enabled.
Please note. The “5V” pin of this screw connector can be used only for applying a disable-signal to “DIS”
signal, it is not allowed to be used for supplying power to any other peripherals.

8. Jumper to configure pulsed/CW mode. When the jumper is set to “Pulsed” (plugged to lower position),
pin 21 of the 68-pin laser connector is set to LOW and the pulses can be controlled via LaserA
(PWM+/PWM-) signal. When set to “CW” (plugged to upper position), pin 21 is set to HIGH and the
laser operates in continuous wave mode.

9. mounting holes for HALdrive XY3-100 to analogue converter, can be used for placing a HALdrive
converter board

12.3.1 Connector to laser

By default, SPI/Trumpf lasers are shipped with a cable which can be used to connect to the E1803dock SPI
directly. However, it seems there are variants of this cable out there, which do not fit to the standard 68 pin
SCSI connector of the E1803dock:

W=46,9 mm, T=6,3 mm

In this case a separate cable is needed which fits to both, the E1803dock SPI and the laser. For the specification
of the connector on laser side, please refer to the manual of the laser itself.

56

On the E1803dock SPI a connector of type “10268-6212PC“ from 3M Electronics Solutions Division (or a
compatible type) is used:

Excerpt from the official datasheet of the connector,
for latest versions please contact 3M Electronics Solutions

12.4 E1803dock CO2/YAG
This variant of the E1803dock can be used with all YAG and CO2 lasers which come with a compatible
interface. For such lasers connection between E1803dock and laser is done mainly via a 1:1 D-SUB25
connection:

1. Screwdriver holes for access to the screw-terminal of the underlying E1803D

57

2. dock-connectors to underlying E1803D which connect with digital, laser and serial interface

3. Laser interface pass-through, for pinout please refer to section “6.7 Laser Signals”

4. Digital interface pass-through, for pinout please refer to section “6.8 Digital Interface” and to jumper
description below

5. D-SUB25 connector for direct connection to laser. A connection can be established using a standard
1:1 D-SUB-cable. This connector provides the following pinout:
Pin Description Pin Description

1 Not connected 14 Not connected

2 Not connected 15 Not connected

3 GND 16 Not connected

4 Emergency input, connected to screw
connector (7) and has to be pulled to HIGH for
different laser types to enable operation

17 GND

5 GND 18 GND

6 GND 19 GND

7 Not connected 20 LaserB first pulse killer signal (FPK/QKILL for
YAG) or pilot laser (for CO2), CMOS, max
14mA

8 GND 21 AOut1 power control, analogue signal in range
0..10V, max 15mA

9 AOut0 frequency control, analogue signal in
range 0..5V, max 15mA; this signal is
hardware-divided by 2 comparing to the
original AOut0

22 LaserA 5V output, CMOS, max 14mA

10 GND 23 MO used to switch the pilot laser, CMOS, max
8mA

11 GND 24 LaserGate non-inverted/high-active laser-on
signal, CMOS, max 14mA

12 LaserGate inverted/low-active laser-on signal,
CMOS, max 40mA

25 LaserA negative output of differential PWM
signal (PWM-, also connected to shield of
BNC-connector), +-5V, max 40mA

13 LaserA positive output of differential PWM
signal (PWM+, also connected to core of BNC-
connector), +-5V, max 40mA

6. Jumpers are reserved for future use and all have to be set to “DIx” (right position)

7. Emergency input screw connector:

EMRG GND 5V

Here “EMRG” is connected to pin 23 of the D-SUB connector and can be used to provide a HIGH-signal
to the laser in order to enable it. When emergency switch functionality is implemented an other way, it
is also possible to directly connect the “5V” pin to “EMRG”.
“5V” is an output which provides 5V from the controller card. It can be used e.g. to apply a HIGH-signal
to the EMRG-input, possibly via a relay contact. Please note. The “5V” pin of this screw connector is not
allowed to be used for supplying power to any other peripherals.

8. BNC-connector for PWM/tickle-signal. It provides a differential +-5V LaserA signal which is also
available as PWM+/PWM- at the D-SUB25 connector (pins 13 and 25)

58

9. mounting holes for HALdrive XY3-100 to analogue converter, can be used for placing a HALdrive
converter board

10. RS232 interface, this is a pass-through of the RS232-signal of the on-board serial interface as
described at “6.9 Serial Interface”. The D-SUB9 connector provides the following pinout:
Pin Description Pin Description

1 GND 6 Not connected

2 Not connected 7 Not connected

3 RX (to be connected with TX on laser side) 8 Not connected

4 TX (to be connected with RX on laser side) 9 Not connected

5 Not connected

59

13 E1803base Mounting Kit

The E1803base extension is a mounting help for easy installation on DIN rails/C45 rails and other possibilities
of mechanical integration into machines:

RED – mounting positions for DIN/C45 rail locks/DIN/C45 rail adapters (bottom side). Here pairs of locks can
be mounted in one of 6 possible positions and one of two possible orientations (horizontal or vertical). Here
locks of type Phoenix Contact 1201578 or similar can be used. With these locks the board then can be clamped
on a DIN rail.

BLUE – mounting holes for the E1803D scanner controller card on top of the E1803base. Here
hex-stands/distance bolts can be screwed in where the controller card is mounted on top.

GREEN – mounting holes for HALdrive XY3-100 to analogue converter, for placing a HALdrive converter board
when E1803base is used as top-cover for E1803D

Mounting procedure for E1803base:

1. Identify suitable positions (RED) for two DIN/C45 rail locks and mount them on bottom side (two or
three screws from top side into the lock on bottom)

2. Mount hex-stands or distance bolts in at least four of the given mounting holes (BLUE).
3. Mount E1803D on top of these hex-stands/distance bolts
4. Clamp the board on your DIN/C45 rail

Optionally and without the DIN/C45 rail clamps mounted, E1803base also can be used as top-cover for the
E1803D controller. There the same (BLUE) holes can be used to mount the E1803base on top using hex-
stands/distance bolts.

60

14 Quick Start into E1803D
Following a few steps are described that give users the possibility to quick start into usage of E1803D scanner
controller. It makes use of BeamConstruct and USB connection. For this quick start manual it is assumed
correct wiring of the controller is already done according to the description above. For more detailed
information about BeamConstruct usage please also refer to quick start manual from
https://.systems/download/manual_quickstart.pdf and to full user manual which is available at
https://halaser.systems/download/manual.pdf.

To start with E1803D controller:

1. SECURITY CHECK: The following steps describe how to set up E1803D scanner controller card and
how to control laser equipment with them. Thus all laser safety rules and regulations need to be
respected, all required technical security mechanisms need to be available and active prior to starting
with it.

2. Install latest software version from https://halaser.systems/download.php – for Windows this package
contains all required drivers, for Linux no separate drivers are needed.

3. Connect E1803D controller via USB and apply +-12V .. +-24V power (depending on scanhead, as
described above).

4. Now the Alive/Error-LED should light up and then start blinking after some time. When this does not
happen, please turn power off, check if the microSD-card is placed correctly and then try again.

5. Evaluate the serial interface the controller is connected with – for Windows the Device Manager (can
be found in Control Panel) will list a new COM-port (e.g. “COM3”); for Linux type “dmesg” in console to
find out to which interface it was connected with (typically “/dev/ttyACM0”).

6. Start BeamConstruct laser marking software.
7. Go to menu “Project” “Project Settings...”, then tab-pane “Scanner”.→
8. Now you can select “E1803D” as scanner controller card. If is is not preselected, please choose the

appropriate scanner controller in the related combo box.
9. Press the “Configure”-button to get into the settings dialogue for E1803D plug-in.
10. Enter the serial interface name in field “IP/Interface” (e.g. “COM3” or “/dev/ttyACM0”).
11. Leave everything with “OK”.
12. Draw some geometries as described in “BeamConstruct Quick Start Manual”.
13. SECURITY CHECK: Next the scanner controller card will be accessed for the first time. That means it is

opened and initialised and all connected equipment may start working now. Thus it is very important to
ensure all security regulations are met and nobody can be injured and no damage can be caused also in
case laser output or other motion starts spontaneously and unexpectedly!

14. Press “F2” or go to menu “Process” “Mark” to open the mark dialogue.→
15. Start marking by pressing the yellow laser-button!

61

https://halaser.systems/download.php
https://halaser.systems/download/manual.pdf
https://halaser.systems/download/manual_quickstart.pdf

15 Command Interface
When E1803D scanner card is connected via USB and the USB-connection is NOT used for transmitting
marking information, it can be used to send control commands to the card. Some of them are independent of
the current operating mode and some of them can be used only in case the controller is operating in stand-
alone mode.
Alternatively control commands can also be sent via Telnet using Ethernet connection. Here a Telnet-client has
to connect to port 23 using the IP of the scanner controller. This Telnet client should work in passive mode.
So when E1803D scanner card is connected this way via Ethernet and the Ethernet-connection is NOT used for
transmitting marking information, it can be used to send control commands to the card. Some of them are
independent of the current operating mode and some of them can be used only in case the controller is
operating in stand-alone mode.
Such a control command always consists of ASCII-text. An appropriate client has to connect to the serial port
(COMx for Windows and /dev/ttyACMx for Linux where “x” is a number identifying the specific serial interface
or TCP/IP port 23). As soon as the connection is established, commands can be sent to the card. All commands
come with following structure:

cxxxx [parameter(s)]

The commands always start with character “c”. Next four characters identify the command itself. Depending on
the command one or more optional or mandatory parameters may follow. The end of the command always has
to be marked with a CR/LF (aka “enter”) and returns with an "OK" or with an error.

When communicating via RS485 serial interface in bus-mode (means when several controllers are connected
via the same RS485-line, when u0bypass is set to 1 and when busid is set), every c-command has to be
preceded by fixed three-bytes in format “bXX” where “XX” is a value in range 00..99 equal to the bus-identifier
set with configuration parameter busid. So in busmode the structure of a d-command is
bXXcxxxx [parameter(s)]

15.1 General Commands
The following commands can be used in all scenarios, they do not depend on a specific operation mode of the
card. Nevertheless it is recommended to not to send a command during card is marking to not to influence
marking operation.

cvers
"version" – return version information of controller card. This command returns a version string

specifying version of hard- and firmware in style vFF-H where “FF” is the version of the firmware and “H”
specifies the hadware revision of the controller.

cecho <0/1>
"echo" – when typing commands in a serial console communicating with the controller, all the typed

characters are echoed, means they are sent back to the host so that a user can see what is typed. This is an
unwanted behaviour when some kind of control software communicates with this interface. Using this
command the serial echo mode can be turned off (parameter 0, only return values are sent back) or on
(parameter 1, all data are sent back). When called with no parameters, the current echo mode value is returned.
Example: cecho 0 – turn off echo mode

cginp
"get input" – get the current state of the digital inputs. The input state is returned as a decimal number

representing the bitpattern at the inputs. So when e.g. a value "15" is returned, this means the lower four inputs
of the digital interface are set to HIGH while the upper ones are at LOW level

62

cgbsr
"get board serial number" – returns the serial number of the card. This number is a unique, internal

value that is used e.g. to identify a controller on host PC when more than one scanner card is used.

cjsor <factor>
“jump speed overwrite” - this command modifies the actual jump speed by using the given factor (in unit

1/100%). All operations make use of the changed jump speed until a factor of 10000 is set or until the controller
is restarted. This is true for both, stand-alone applications where an .EPR-file is loaded from microSD-card and
for host-controlled marking operations (via libe1803 or BeamConstruct).

cmsor <factor>
“mark speed overwrite” - this command modifies the actual mark speed by using the given factor (in

unit 1/100%). All operations make use of the changed mark speed until a factor of 10000 is set or until the
controller is restarted. This is true for both, stand-alone applications where an .EPR-file is loaded from
microSD-card and for host-controlled marking operations (via libe1803 or BeamConstruct).

cpwor <factor>
“power overwrite” - this command modifies the actual power by using the given factor (in unit 1/100).

All operations make use of the changed power until a factor of 10000 is set or until the controller is restarted.
This is true for both, stand-alone applications where an .EPR-file is loaded from microSD-card and for host-
controlled marking operations (via libe1803 or BeamConstruct).
This command influences following methods of setting laser power:

• pulse width, here user has to ensure the resulting pulse width is smaller than the period of the related
frequency, elsewhere the output will be a continuous signal

• LP8 laser port
• AOut0 and AOut1 analogue outputs

cfror <factor>
“frequency overwrite” - this command modifies the actual frequency by using the given factor (in unit

1/100%). All operations make use of the changed power until a factor of 10000 is set or until the controller is
restarted. This is true for both, stand-alone applications where an .EPR-file is loaded from microSD-card and for
host-controlled marking operations (via libe1803 or BeamConstruct).
This command is not available for lasermodes CO2 or YAG
This function requires firmware version 16 or newer.

cpuor <factor>
“pulse-width overwrite” - this command modifies the actual pulse-width by using the given factor (in

unit 1/100%). All operations make use of the changed pulse-width until a factor of 10000 is set or until the
controller is restarted. This is true for both, stand-alone applications where an .EPR-file is loaded from
microSD-card and for host-controlled marking operations (via libe1803 or BeamConstruct).
This command is not available for lasermodes CO2 or YAG, there the pulse-width is changed via command
cpwor.
This function requires firmware version 16 or newer.

cgmtx
“get matrix” - return the four elements of the 2x2 output matrix. The members of the matrix are

returned as four integers with a factor of 1000. So returned values of “1200 0 0 1200” are equal to a matrix

1,2 0,0

0,0 1,2
Which itself defines a scale factor of 1,2 in both, X and Y direction of the output.
This function requires firmware version 11 or newer.

63

csmtx <m11 m12 m21 m22>
“set matrix” - set a 2x2 matrix which is used for the global output of the scanner card. This means, the

values applied here influence the whole project which is currently be marked. Such a 2x2 matrix can be used to
modify the X- and Y-scale, the rotation and the X- and Y-slant of the output. The matrix members m11, m12,
m21 and m22 have to be given as integers which represent the matrix elements multiplied by 1000.
As soon as a custom matrix is set via this command, all matrix values out of a loaded EPR file are ignored and
only the matrix-values currently set are used. This includes gain and rotation correction settings which may be
set in such an EPR file.
Example: csmtx 996 -87 87 996 - rotate the output by 5 degrees; these values are generated out of the
unity matrix {1000, 0, 0, 1000} which was multiplied with the rotation matrix {cos(5)*1000, -sin(5)*1000,
sin(5)*1000, cos(5)*1000}
This function requires firmware version 11 or newer.

cswaf <factor>
Sets a factor in unit bits per mm that is used with all commands that specify some distance or position (such as
cspof). When this factor is set to a proper value, the given positions/distances can be specified in unit um
instead of bits. When a factor of 1000 is specified, the functionality is reset back to the default behaviour where
position values have to be given in unit bits.
This parameter requires a firmware version 18 or newer.

cspof <x y z>
“set position offset” – sets a n position offset for the complete output. This function expects three parameters
for the offset to be set in X, Y and Z-direction. The values to be given here are signed 26 bit, means they need to
be in range -33554431..33554432. To reset the offset for one or more directions, a value of 0 has to be set.
Please note: this offset is set prior to the matrix calculations which may be done when a custom output matrix is
set using command csmtx. Resulting from that, the matrix calculation also applies to the offset defined here. So
when the matrix e.g. defines a scale factor for the output, the offset values specified here are scaled by the same
factor.
Example: cspof -16777216 0 0 – shift the output by a quarter of the whole available working area to the
left.
This function requires firmware version 16 or newer.

cgana
get analogue input values – this command returns the values which have been read at analogue inputs

AIn0..AIn2 recently. Reading of the analogue inputs is done cyclically and automatically with a low frequency.
This command does not read the analogue values but returns the values which have been read at last cycle. So
when this command is repeated too fast, it may return the same values.
This command returns the current values of all inputs AIn0, AIn1 and AIn2 all together.
To use this command, firmware version 4 and the Multi-IO Extension Board are needed.

15.2 Stand-Alone Control Commands
Following commands are useful in case scanner controller is operating in stand-alone mode where marking data
are loaded from microSD-card using special EPR-fileformat.

cstop
"stop" – stop marking as fast as possible. A running marking operation is stopped and LaserGate is

turned off.

chalt <0/1>
"halt" – halts or continues the processing and output of marking data. When given parameter is equal

to 1, marking is stopped next time the laser is off but no vector data are flushed. On continue (parameter equal
0) controller continues processing at the point where halt occurred. When marking is stopped with cstop the
halt-condition is cleared too, means on next transmission of new marking data they are processed without the
need to explicitly continue operation.

64

cstrt
"start" – start marking operation. This command can be called only when no marking operation is

running and when a valid project (.epr) file was loaded. In this case the currently loaded project is marked once.

ctrig
"trigger" – send an external trigger signal by software. When scanner card is in state "marking" but

waiting for an external trigger, this command releases this trigger. So behaviour is the same like a rising edge on
the ExtStart input of the controller card.

cstat
"state" – return the current state of the card. This command returns one of the following texts

identifying the operational state:
• marking – card is processing some marking data currently, means either actively outputting them or

waiting for an external trigger to start marking
• stand-alone – controller is in stand-alone mode
• idle - card is waiting and not marking
• waiting - a project file was loaded, is ready for execution and waits for a trigger signal (either via

ExtStart input or via command "ctrig")

cscnc
“set CNC data” – switch to a mode where G-Code process data are accepted via Telnet/serial interface.

When this command is set, the G-Code mode stays active until a command “M2” (end of G-Code program) is
detected. Only with this command the controller returns to normal operation mode and again accepts native
“c”- and “d”-commands.
Using of command “cscnc” requires stand-alone mode “auto” in order to store the received G-Code data in
memory for further processing and to control execution of the G-Code data. After the G-Code data have been
transferred and transmission has been ended with “M2”, marking of these data can be started by applying an
external trigger at ExtStart or by sending a trigger-event via command (e.g. “ctrig”).
To successfully send G-Code data, some preconditions have to be met. For data transmission via Telnet:

• a G-Code line is limited to 255 characters maximum and always has to end with carriage return and/or
line feed

• when transferring more than one line at the same time, the maximum packet size is 1460 bytes, at the
end of such a packed a G-Code line has to end too and it is recommended to flush the full output buffer
in order to invoke a data transmission over TCP/IP; this procedure is recommended in order to have an
as fast as possible data transfer independent from the implementation a TCP/IP stack really uses

For data transmission via USB serial interface:
• a G-Code line is limited to 255 characters maximum and always has to end with carriage return and/or

line feed
The structure and supported G-Code commands are described in section “16 Supported CNC G-Code
Commands“ below.
This function requires firmware version 3 or newer.

cgtin
"get trigger inputs" – get the state of the external input signals. This command is not related to digital

inputs of digital interface but provides information regarding signal state of external start and stop. It returns a
value that specifies which of these input signals are currently HIGH:
0 – ExtStart and ExtStop are both LOW
2 – ExtStart is HIGH
4 – ExtStop is HIGH
6 – ExtStart and ExtStop are both HIGH

cscor <idx>

65

“set correction” - specifies a new index for a previously loaded correction file (see description of
configuration parameter corrtable in section “6.5 microSD-Card” above). The parameter idx can be a value
in range 0..15 and needs to correspond to a previously loaded correction table. The newly set correction table
applies to all vector data which are processed after this call. Thus it is recommended to use it only when
marking operation was stopped – elsewhere it is not predictable how many vector data already have been pre-
calculated with the previous correction table and starting with which vector data the new correction file is
used.
When a idx-value is set which corresponds to no correction file data, no more correction is performed on
vector data.
This command requires firmware version 6 or newer.

cgcor
“get correction” - this command is the counterpart of cscor and displays the index number of the

currently used correction file
This command requires firmware version 6 or newer.

clepr <path>
"load epr" – loads an EPR stand-alone file or CNC G-Code file from microSD card for outputting it on

next marking operation. This command can be executed in stand-alone mode only.

When operating in stand-alone mode “idxselect”, the command expects a number as parameter which specifies
the index file to be loaded.
When operating in stand-alone mode “ioselect” or “iohaltedloop”, the command is not supported.
When operating in any other stand-alone mode, the command expects the path to the file to be loaded as
parameter. Since this is the only parameter, no quotes are allowed for the pathname. The pathname itself has to
be in format
0:/filename.epr
or
0:/filename.cnc
where 0:/ specifies the microSD-card, .epr is the standard extension of E1803D stand alone marking data
files (this name is a short-cut for "E1803D Processing Data") and .cnc is the extension which has to be used
when an ASCII-G-code file is provided. EPR-files can be created out of BeamConstruct, CNC-files are text files
containing valid G-Code commands as described in section “16 Supported CNC G-Code Commands”
During loading the ready-for-marking output signal is turned off and it is turned on only in case the file could be
loaded successful (please refer to related section above).
Examples: clepr 0:/test.epr – loads a stand-alone file "test.epr" from microSD card

cgepr
“get epr” – returns the name of the currently loaded stand-alone file or an error “no file specified” when

no file is loaded.

cdepr <path>
"delete epr" – deletes an EPR stand-alone file and all related, additional files from microSD card. This

command can be executed in stand-alone mode only.

When operating in stand-alone mode “idxselect”, the command expects a number as parameter which specifies
the index file to be loaded.
When operating in stand-alone mode “ioselect” or “iohaltedloop”, the command is not supported.
When operating in any other stand-alone mode, the command expects the path to the file to be delete as
parameter. Since this is the only parameter, no quotes are allowed for the pathname. The pathname itself has to
be in format
0:/filename.epr
where 0:/ specifies the microSD-card and .epr is the standard extension of E1701 stand-alone marking data
files (this name is a shortcut for "E1803 Processing Data"). Deleting is done asynchronously, so the returned
“OK” only verifies the command was accepted. Successful deletion of the file can be assumed after 0,5 seconds.

66

Examples: cdepr 0:/test.epr – deletes a stand-alone file "test.epr" from microSD card. When additional
files test.dat (which may contain related dynamic data) and test.ser (which may hold serial number
information) exist, they are deleted by this command too.
This command requires a firmware version 16 or newer.

ctlxy <x> <y> <z>
“turn on laser at given XYZ position” – lets the scanner move to a specific position and turns on the laser as long
as ExtStart is HIGH
This command requires stand-alone mode “auto”. It can be used to turn on the laser as long as the ExtStart input
is at HIGH. So using this function some externally controlled drilling or cutting operations are possible. As
parameter it expects the X, Y and Z coordinate positions to jump to (in unit 26 bits). The sequence of commands
to use this function are as follows:

• unload the current project file (“e.g. by calling “clepr 0:/notexist.epr”)
• call “ctlxy” together with the 26 bit XYZ position the scanner has to jump to the parameters used →

for jumping are the ones out of the last EPR file executed
• the state-flag E1803_CSTATE_SAC_CTLXY is set
• the state-flag E1803_CSTATE_SAC_READY is set as soon as the scanner has arrived at the specified

XYZ position, this happens together with the output DOut0:
• wait until DOut0 goes to HIGH this output signals the specified XYZ position was reached and the →

controller is able to turn on the laser now
• pull ExtStart to HIGH the laser is turned on within 1 usec at max using the laser parameters out of →

the last EPR file executed
• as long as ExtStart is HIGH, the laser is turned on and DOut1 is at HIGH and the state-flag

E1803_CSTATE_SAC_MARKING is set
• pull ExtStart to LOW as soon as the laser has to be turned off both DOut0 and DOut1 are pulled to →

low, the laser is turned off within 1 msec at max and all E1803_CSTATE_SAC_-flags are reset
• now the complete sequence has ended ad the ctlxy-command has elapsed. To turn on the laser via

ExtStart again, a new command ctlxy has to be issued

Example:
ctlxy 33554432 33554432 33554432
Starts a ctlxy-sequence as described above with the scanner moved to the centre position.

This command requires firmware version 13 or newer.

csbuf <idx> <path>
“set buffer” - this command works similar to the configuration parameter “iobuff” and can be called in

stand-alone modes “ioselect” and “idxselect”. It can be used to preload EPR stand-alone data files into memory
so that they can be accessed faster and without additional accesses of the SD card. The first parameter <idx>
is mandatory and specifies the slot the EPR file has to be loaded to. Different to parameter “iobuff” where the
slot number is given automatically and where the index value can be in range 1..255, here the slot number and
the index number are always the same and are in range 1..20. So only the first 20 index values can be used
together with this dynamic loading function. When only <idx> is given, the loaded file is 0:/<idx>.epr.
Optionally also a file name <path> can be given in format 0:/file.epr. In this case the given file is loaded to
the slot specified by <idx> and can be accessed with the related index number. After every call to csbuf the
command cgbuf has to be executed repeatedly until it returns -1.

Examples:
csbuf 3 – loads the file 0:/3.epr from SD-card and stores it in slot number 3 so that it can be accessed
either via “clepr 3” (in stand-alone mode “idxselect”) or via a digital input pattern at the digital interface
representing a 3 (in stand-alone mode “ioselect)
csbuf 5 0:/markme.epr – loads the file 0:/markme.epr from SD-card and stores it in slot number 5 so
that it can be accessed either via “clepr 5” (in stand-alone mode “idxselect”) or via a digital input pattern at
the digital interface representing a 5 (in stand-alone mode “ioselect)

This command requires firmware version 9 or newer.

67

cgbuf
“get processed buffer” - returns the index number of the buffer that is currently processed by a

previous call to cgbuf. As long as this command returns a value greater than -1, no other calls to csbuf are
allowed. The returned number specifies the index/slot number that is currently filled with data. When cgbuf
returns -1, the loading operation has been finished.

This command requires firmware version 9 or newer.

cstxt <"elementname"> <"text">
"set text" – set a new text value to an element in currently loaded project. The parameters for this

command both have to be given with quotes ("). Setting a text is possible only for dynamic elements like
DataMatrix or QR barcodes or texts. Here "elementname" is the name of the element that has to be modified
(this is the same name like shown in element-tree of BeamConstruct) and the new text to be set. The "text"
itself can be a format string as used within BeamConstruct when a serial number input element is involved
Example: cstxt "Barcode 1" "Hello :-)" - sets a new text "Hello :-)" for the element with name
"Barcode 1"

cgtxt <"elementname">
"get text" – gets the currently used text value of an element in loaded project. The parameter for this

command has to be given with quotes ("). Getting a text is possible only for dynamic elements like DataMatrix
or QR barcodes or texts.

Example: cgtxt "Barcode 1" – gets the text from the element with name "Barcode 1"

csser <"elementname"> <cnt>
"set serial number" – sets a new serial count value to an element in currently loaded project. The

element name for this command has to be given with quotes ("). Setting a new count is possible only for dynamic
elements like DataMatrix or QR barcodes or texts that have a serial number input element assigned. Setting the
value has to be handled with care, here every value can be specified independent if it fits to possibly exiting beat
count values.
Example: csser "Text 2" 42 – set a new serial number count value 42 for element with the name "Text 2"

cgser <"elementname">
"get serial number" – gets the current serial count value from an element in loaded project. The

element name for this command has to be given with quotes ("). Getting the count is possible only for dynamic
elements like DataMatrix or QR barcodes or texts that have a serial number input element assigned.

ciser <"elementname">
"increment serial number" – increments the current serial count value of an element according to its

serial number parameters. The element name for this command has to be given with quotes ("). Incrementing
the count is possible only for dynamic elements like DataMatrix or QR barcodes or texts that have a serial
number input element assigned. This function is more secure than forced setting of a new count value with
"csser" since it can't violate the counting rules.

cdser <"elementname">
"decrement serial number" – decrements the current serial count value of an element according to its

serial number parameters. The element name for this command has to be given with quotes ("). Decrementing
the count is possible only for dynamic elements like DataMatrix or QR barcodes or texts that have a serial
number input element assigned. This function is more secure than forced setting of a new count value with
"csser" since it can't violate the counting rules.

68

crser <"elementname">
"reset serial number" – resets the current serial count value of an element to its start-value (according

to its serial number parameters). The element name for this command has to be given with quotes ("). Resetting
the count is possible only for dynamic elements like DataMatrix or QR barcodes or texts that have a serial
number input element assigned. This function is more secure than forced setting of a value with "csser" since it
can't violate the predefined serial number parameters and uses the correct reset value.

cstim <seconds>
"set time" – this command sets the system time to the value specified with the parameter. Here the

number of seconds have to be specified that have elapsed since 01.01.1970 at 00:00:00. After sending this
command the controller card operates at the given time. The time value is lost after next power cycle and has to
be set again.
Example: cstim 1420113600 – set the internal time of E1803D controller to 01.01.2015 12:00:00, here
1420113600 represents the number of seconds that have been elapsed between 01.01.1970 00:00:00 and
01.01.2015 12:00:00

crtim
"retrieve time" – this command schedules time retrieval from an SNTP server asynchronously. It always

returns with "OK" since the command is scheduled for execution during next working cycles. To use this
command, controller has to be configured with IP, netmask, gateway and SNTP server IP correctly and needs to
be able to access this SNTP server from its position in network. For details please refer to description of
configuration parameters in section about microSD card above.

cgtim
"get time" – returns the current time of the board in number of seconds that have elapsed since

01.01.1970 at 00:00:00. After powering up the board and before a valid time has been set, this value is
undefined.

cftim
"get formatted time" – returns the current time of the board as formatted string in style DD.MM.YYYY

hh:mm:ss. After powering up the board and before a valid time has been set, this value is undefined.

cstyr <year>
"set time year" – sets the year of the current system time to the value given as parameter. This value

has to be in range 1900..2038

cstmo <month>
"set time month" – sets the month of the current system time to the value given as parameter. This

value has to be in range 1..12 according to the number of the month.

cstdy <day>
"set time day" - sets the day of the current system time to the value given as parameter. This value has

to be in range 1..28, 1..30 or 1..31 according to the length of the current month.

csthr <hour>
"set time hour" – sets the hour of the current system time to the value given as parameter. This value

has to be in range 0..23.

cstmi <minute>
"set time minute" – sets the minute of the current system time to the value given as parameter. This

value has to be in range 0..59.

69

cstsc <second>
"set time second" – sets the second of the current system time to the value given as parameter. This

value has to be in range 0..59.

cgsta
"get serial state" – this command applies only when working in stand-alone mode with dynamic serial

number data that change on every mark operation. It returns information if the state of serial numbers has
changed and is not yet saved (in this case "pending" is returned) or if they have been saved and therefore do not
get lost when power is turned off now ("saved" is returned in this case).

cssta
"save serial state" - this command applies only when working in stand-alone mode with dynamic serial

number data that change on every mark operation. When it is called, a command to save the current state of
serial numbers is enqueued and will be processed as soon as controller is able to store these data. So when this
command returns with "OK" that doesn't necessarily means the serial number states are saved now. The
current save state still has to be checked by calling "cgsta" after "cssta" has been issued.

cdtl0 <text>
“dot text line 0” - this command is used in dot mode matrix marking mode only. It can be used to set a

new line of text for the upper line to be marked in dot matrix mode. It can be called several times in advance to
set some more texts. They are marked in the order they have been set on every marking cycle started by an
ExtStart input signal. Stopping a marking operation by calling “cstop” or by applying a signal to ExtStop input
deletes all previously set texts and empties the whole text buffer.

cdtl1 <text>
“dot text line 1” - this command is used in dot mode matrix marking mode only. It can be used to set a

new line of text for the lower, optional line to be marked in dot matrix mode. It can be called several times in
advance to set some more texts for the second line. When the controller card is configured to work with two
lines of texts, it always expects pairs of texts to be set, means “cdtl0” and “cdtl1” needs to be used always
together. They are marked in the order they have been set on every marking cycle started by an ExtStart input
signal. Stopping a marking operation by calling “cstop” or by applying a signal to ExtStop input deletes all
previously set texts and empties the whole text buffer.

crrrr
"reboot" – perform a warm reboot of the hardware and restart the firmware. Reboot is done

immediately, means this command does not return anything but connection to the board will be interrupted as
soon as it has been sent.

15.3 Hardware Commands
These commands can be used to access hardware signals directly. When these hardware outputs are set or
unset while a marking operation is running, they may have no effect as they may be overridden immediately.
Thus it is recommended to execute them only when the controller card is idle and no other operations are in
progress. But also in this case, when a hardware output is set to a specific state, any operation (especially
marking cycle) that is executed afterwards, may override that specific state-changes. Following hardware-
specific commands are supported:

csout <value>
"set output" – set the state of the digital outputs. The output to be set is specified as a decimal number

representing the bitpattern. When no parameter is given, the behaviour is undefined.
Example: csout 128 - set DOut7 at the digital interface to HIGH while all others stay at LOW

70

cglog
"get logline" – returns a single logging line. This command has to be called repeatedly until an error is

returned to get logging information from the controller. On each call of this function one logging line is
returned. When "cglog" isn't used for a longer time it may be possible the internal log-buffer has overrun. In
this case "cglog" will not return all log information.

cslgt <value>
“set LaserGate” – set the state of the LaserGate output either to HIGH (value is set to 1) or to LOW (value is set
to 0).
This command requires firmware version 15 or newer.

cslmo <value>
“set MO” – set the state of the main oscillator output either to HIGH (value is set to 1) or to LOW (value is set to
0).
This command requires firmware version 15 or newer.

cslp8 <value>
“set LP8” – set the state of the LP8 output port to the value given as parameter. Here value is allowed to be in
range 0..255, the related bits of the LP8 output are set according to the bitpattern of the specified number.
This command requires firmware version 15 or newer.

15.4 Mark Control Commands
The following section describes commands that can be used to send marking data (including vector data and
laser/scanner parameters) to the controller. If possible, these commands should not be mixed with the
commands described above but have a different structure:

• they always start with a character "d"
• the total length of one frame (means one command) is always 14 bytes
• they mustn't be terminated with CR/LF, the end of a frame is determined by its size of 14 bytes
• they contain binary, means not human-readable data and therefore can't be sent manually
• in bus-mode they are preceded by an additional identifier “bXX”

Different to the programming interface (“17.1 E1803D Easy Interface Functions”) mentioned below, this
possibility to send control and marking data is completely independent from any host operating system and
from any additional software or libraries. It gives the possibility to send marking data to the card right via some
binary data which can be sent via Ethernet connection (Telnet) or USB serial interface.

PLEASE NOTE: when using Network/Telnet connection and when switching from a Mark Control Command
("d"-command) to a general command ("c"-command as described above) it is recommended to flush all output
before sending a command of other type.

These commands always have the following structure:
dCAAAABBBBEEEE
d – marks starting point of a frame and identifies a mark control command with a fixed length of 14 bytes
(including this character)
C – 8 bit value that specifies what command has to be executed
AAAA – 32 bit little-endian value, it's meaning and usage depends on "C"
BBBB – 32 bit little-endian value, it's meaning and usage depends on "C"
EEEE – 32 bit little-endian value, it's meaning and usage depends on "C"

When communicating via RS485 serial interface in bus-mode (means when several controllers are connected
via the same RS485-line, when u0bypass is set to 1 and when busid is set), every d-command has to be

71

preceded by fixed three-bytes in format “bXX” where “XX” is a value in range 00..99 equal to the bus-identifier
set with configuration parameter busid. So in busmode the structure of a d-command is
bXXdCAAAABBBBEEEE.

It is recommended to collect commands before they are sent to the controller, especially in case Ethernet
connection is used. In case of TCP/IP the used payload length of a TCP-frame is 1460 bytes which should be
filled as much as possible in order to avoid additional data transfers. So when sending larger amounts of data to
the controller, up to 104 command frames should be collected and then sent all together (104 * 14 = 1456 bytes
which is close to 1460).

From time to time the controller sends back an answer to give back some state information. In case of
Ethernet/Telnet connection this answer is not sent periodically but as response to a complete block of data sent
to the card. Since the size of such a block is not specified and depends on the underlying TCP/IP implementation
(in case of Ethernet connections), no predictions can be made after what amount of data a response frame is
sent. Thus it is recommended to try to receive such a response frame every time some data have been
transmitted until at least one frame was received. When host software is idle, it can try to read response frames
permanently. To trigger transmission of a new response frame, "ping" control command 0x0A can be used (for
details please refer below).
In case of USB/serial connection this response is sent automatically after every 14 byte frame submitted, so it is
necessary to always read them in order to avoid overrun of receive buffers.
Such a response frame gives back information about the current operational state of the card and comes in
following structure:
dRLLLLSSSSIIII
d – marks starting point of a response frame with a fixed length of 14 bytes (including this character), this
character can be used to re-synchronise
R – 8 bit value, currently always 0xFF; this value has to be checked for future compatibility, in case it is not 0xFF
the frame has to be ignored!
LLLL – 32 bit little-endian value, here the amount of free command buffer space is returned; sending
application has to ensure this buffer never overruns, so it is recommended to always leave a space of at least
200 commands (recommended: 1000), new commands should be sent only when there is more space than this
left in this buffer
SSSS – 32 bit little-endian value, signalling operational state; this value can consist of following or-
concatenated flags:

• 0x00000001 – card is currently marking
• 0x00000002 – the external start input is currently HIGH
• 0x00000004 – the external stop input is currently HIGH
• 0x00000008 – the external start input was set to HIGH after last response frame, this value is set

only once for every rising edge on this input
• 0x00000010 – the external stop input was set to HIGH after last response frame, this value is set

only once for every rising edge on this input
• 0x00000080 – the controller has received some data which may result in a marking operation;

these data are currently processed but marking has not yet started
• 0x00000400 – card is active but currently waiting for an external trigger to continue operation

IIII - 32 bit little-endian value, lower 8 bit show the actual state of digital inputs

Currently following mark control commands (identified by the 8 bit hexadecimal value for position "C" in a
frame) can be sent to the controller:

Jump to Position
Move to a given coordinate position using the current jump speed and with laser turned off

C = 0x00
AAAA = x-position to move to in range 0..67108863
BBBB = y-position to move to in range 0..67108863
EEEE = z-position to move to in range 0..67108863

Mark to Position

72

Move to a given coordinate position using the current mark speed and with laser turned on
C = 0x01
AAAA = x-position to move to in range 0..67108863
BBBB = y-position to move to in range 0..67108863
EEEE = z-position to move to in range 0..67108863

Start output
This command has to be called at the end of every marking sequence to ensure marking output really

starts. This is important in case only a few vectors are sent to ensure marking is started but it is recommended
to always use this command.
C = 0x02
AAAA = unused, set to 0
BBBB = unused, set to 0
EEEE = unused, set to 0

Wait for external trigger
Set a trigger point to current position of stream; emission of output data will stop until an external

trigger signal is detected
C = 0x03
AAAA = unused, set to 0
BBBB = unused, set to 0
EEEE = unused, set to 0

Set speed values
Specify the speeds to be used during jump or mark movements (invoked by commands 0x00 and 0x01)

C = 0x04
AAAA = jumpspeed in unit bits per microsecond
BBBB = markspeed in unit bits per microsecond
EEEE = unused, set to 0

Set laser delays
Specify the delays to be used when laser is turned on or off

C = 0x05
AAAA = laser on delay in unit microseconds and in range -10000000..10000000
BBBB = laser off delay in unit microseconds and in range 0..10000000
EEEE = unused, set to 0

Set scanner delays
Specify the delays to be used before and after mark and within a polygon

C = 0x06
AAAA = jumpdelay in unit microseconds
BBBB = markdelay in unit microseconds
EEEE = in-polygondelay in unit microseconds

Stop marking
Tries to halt, continue or stop current output depending on the chosen option

C = 0x07
AAAA = stop option:

0 - tries to stop operation as fast as possible and rejects all data that still may be enqueued for
execution
1 - marking is stopped next time the laser is off but no vector data are flushed, card is still active
2 - controller continues processing at the point where halt occurred (requires a previously called
command 0x07 with stop option 1)

BBBB = unused, set to 0

73

EEEE = unused, set to 0

Set wobble parameters
Specify the wobble settings to be used for next marking operations

C = 0x08
AAAA = wobble amplitude in X-direction using unit bits and with maximum range of 0..10000000 bits
BBBB = wobble amplitude in Y-direction using unit bits and with maximum range of 0..10000000 bits
EEEE = wobble frequency in unit Hz*100 and in range 1..2500000

Set LP8 outputs
Set LP0..LP7 output pins on laser signal connector

C = 0x09
AAAA - bitpattern to be set on LP0..LP7 output pins, here only lower 8 bits are used.
BBBB = unused, set to 0
EEEE = unused, set to 0

Ping
This command can be used to let the controller send back a state-information. So it can be used to

check if the card is still operating or not.
ATTENTION: this command should not be sent repeatedly and without any delay! This could cause E1803D
scanner controller to stall because the massive data transfer has to be handled. So it is recommended to have a
delay of at least 150 msec between every ping.
C = 0x0A
AAAA - unused, set to 0
BBBB = unused, set to 0
EEEE = unused, set to 0

Set digital outputs
Set DOut0..DOut7 output pins on digital interface connector

C = 0x0B
AAAA - bitpattern to be set on DOut0..DOut7 output pins, here only lower 8 bits are used.
BBBB = bitmask specifying which of the bits in AAAA have to be set or cleared, all these bits in AAAA are left
unchanged, where the corresponding bit in BBBB is 0
EEEE = unused, set to 0

Set lasermode
Specify the laser mode the card has to operate with

C = 0x0C
AAAA - flags specifying the laser mode, here following values have to be or-concatenated to specify the
behaviour of a laser:

• 0x40000000 - laser frequency on LaserA output is turned on immediately and together with
laser gate signal, this flag can't be used together with 0x20000000

• 0x20000000 - laser frequency on LaserA output is turned on after FPK time, this flag can't be
used together with 0x40000000

• 0x10000000 - laser supports FPK on LaserB output
• 0x08000000 - laser frequency has to be turned off and switched to standby-frequency
• 0x04000000 – a frequency can be emitted at LaserB permanently, the related frequency can

be specified with command 0x15
Using these flags following laser types can be configured:
• CO2-laser:

0x40000000 + 0x08000000
• YAG-laser with FPK:

0x40000000 + 0x08000000 + 0x10000000 or
0x20000000 + 0x08000000 + 0x10000000

74

• laser with continuously running frequency: 0x40000000
BBBB = unused, set to 0
EEEE = unused, set to 0

Set marking on-the-fly parameters
Specify the parameters used for marking on-the-fly applications

C = 0x0D
AAAA = marking on-the-fly resolution in X-direction in unit bits per encoder increment
BBBB = marking on-the-fly resolution in Y-direction in unit bits per encoder increment
EEEE = unused, set to 0

Set laser frequency
Specify the frequency the laser has to be operated with during marks, usage of these parameters

depends on the lasermode specified with command 0x0C
C = 0x0E
AAAA = frequency in unit Hz and in range 25..20000000 Hz
BBBB = pulse-width in unit microseconds and in range 1..65530 usec
EEEE = unused, set to 0

Set laser standby frequency
Specify the frequency the laser has to be operated with during jumps, usage of these parameters

depends on the lasermode specified with command 0x0C
C = 0x0F
AAAA = frequency in unit Hz and in range 25..20000000 Hz
BBBB = pulse-width in unit microseconds and in range 1..65530 usec
EEEE = unused, set to 0

Set first pulse killer
Specify the pulse width of the FPK signal when laser is turned on, usage of these parameters depends

on the lasermode specified with command 0x0C
C = 0x11
AAAA = FPK pulse width in unit microseconds*100
BBBB = the time the laser frequency has to be started after beginning of FPK using unit microseconds*2, this
value is used only when lasermode flag 0x20000000 is set
EEEE = unused, set to 0

Switch MO-output
Turns the MO-output of laser interface connector on or off

C = 0x12
AAAA = turn MO output on when equal 1, turn it off when 0
BBBB = unused, set to 0
EEEE = unused, set to 0

Release external trigger
When card is waiting for an external trigger this command can be sent to release this external trigger

by software and to continue execution without the need to receive a real external signal
C = 0x13
AAAA = unused, set to 0
BBBB = unused, set to 0
EEEE = unused, set to 0

Wait for external input signal

75

Stop execution until a defined input bitpattern is detected at configurable input pins DIn0..DIn7 of
digital interface connector
C = 0x14
AAAA = a bitpattern specifying which signals LOW or HIGH have to be detected at digital input pins
BBBB = a bitpattern specifying which of the digital input pins have to be watched for a signal, these bits that are
set to 0 are ignored while these bits, that are set to 1 have to get the state specified in previous parameter in
order to let operation of card continue
EEEE = unused, set to 0

Set LaserB frequency
Specify the frequency LaserB output has to emit; this function can only be used when operating using a

laser mode with flag 0x04000000 set (see command 0x0C above).
C = 0x15
AAAA = frequency in unit Hz and in range 25..20000000 Hz
BBBB = pulse-width in unit microseconds and in range 1..65530 usec
EEEE = unused, set to 0

Wait until on-the-fly-increments have been elapsed
This command adds some special kind of delay to the application. It can be used only when marking on-

the-fly is enabled (by setting the on-the-fly factors), and halts laser marking not for a given time but for a given
distance. Marking is continued only when the given number of increments has elapsed. When no or not enough
increments are counted by the controller, operation only can be stopped.
This command requires firmware version 27 or newer.
C = 0x16
AAAA = positive or negative number of increments to wait for until operation continues; here it depends on the
used counting direction of the encoder if the given distance-value has to be positive or negative, when sign of
the number and counting direction of the encoder do not fit to each other, the controller will halt at this
position for a very long time
BBBB = unused, set to 0
EEEE = unused, set to 0

Insert a delay into the stream of data
This command adds a delay and lets the controller wait for the given time of ticks until the next

command is executed. One tick is equal to 0,5 usec.
This command requires firmware version 12 or newer.
C = 0x18
AAAA = number of ticks to wait for
BBBB = unused, set to 0
EEEE = unused, set to 0

Switch LP8-Latch-output
Turns the LP8-Latch-output of laser interface connector on or off

This command requires firmware version 12 or newer.
C = 0x19
AAAA = turn Latch output on when equal 1, turn it off when 0
BBBB = unused, set to 0
EEEE = unused, set to 0

Specify output for MIP-signal
Specify a single output pin of digital interface connector to be used for "Mark in progress"-signal, this

output pin will be HIGH as long as a marking operation is in progress.
C = 0x2A
AAAA = the number (not a bitpattern!) of the digital output pin to be used for MIP-signal (in range 0..7)
BBBB = unused, set to 0
EEEE = unused, set to 0

76

Halt/continue current marking operation
Stops the current marking operation on very next appearance of a jump or continue a previously halted

operation.
C = 0x2F
AAAA = 1 to halt marking and 0 to continue a halted operation
BBBB = unused, set to 0
EEEE = unused, set to 0

Specify output for WET-signal
Specify a single output pin of digital interface connector to be used for "Wait External Trigger"-signal,

this output pin will be HIGH as controller is waiting for an external trigger.
C = 0x33
AAAA = the number (not a bitpattern!) of the digital output pin to be used for WET-signal (in range 0..7)
BBBB = unused, set to 0
EEEE = unused, set to 0

Set first row of 2x2 output matrix
Specify the elements m11 and m12 of a 2x2 output matrix which is applied to all coordinate values as

soon as the second half is applied with command 0x41. This matrix can be used to scale, slant, rotate and mirror
the input coordinates in respect to the output positions. For details please check out description of command
0x41 below
This command requires firmware version 3 or newer.
C=0x40
AAAA = the m11 part of the 2x2 matrix multiplied with 1000000
BBBB = the m12 part of the 2x2 matrix multiplied with 1000000
EEEE = unused, set to 0

Set second row of 2x2 output matrix
Specify the elements m21 and m22 of a 2x2 output matrix which is applied to all coordinate values

together with the first row of matrix data which has to be set using command 0x40 in a preceding call. This
matrix can be used to scale, slant, rotate and mirror the input coordinates in respect to the output positions.
Assumed a matrix bases on a 4-elements array, it has following structure:

{m11, m12, m21, m22}

then these matrix values can be used and even combined with each other by multiplying them:
• rotation: {cos(angle), -sin(angle), sin(angle), cos(angle)}
• scaling: {factorX, 0.0, 0.0, factorY}
• slant X: {1.0, 1.0/tan(angle), 0.0, 1.0}
• slant Y: {1.0, 0.0, 1.0/tan(angle), 1.0}
• mirror X: {-1.0, 0.0, 0.0, 1.0}
• mirror Y: {1.0, 0.0, 0.0, -1.0}

This command requires firmware version 3 or newer.
C=0x41
AAAA = the m21 part of the 2x2 matrix multiplied with 1000000
BBBB = the m22 part of the 2x2 matrix multiplied with 1000000
EEEE = unused, set to 0

Download new firmware
Download a new firmware file to the controller and write it to the microSD-card so that it can be used

after next reboot. The binary data of the new firmware have to be appended directly to this command. This
command has to be used in a specific sequence in order to ensure the current firmware file is updated correctly:

77

• ensure the card is idle (state-flag SSSS is 0)
• send command 0x45 with length of firmware data and checksum
• send binary firmware data directly after this command
• wait until card state returns “active” (by repeatedly sending ping-commands), now in state flag SSSS bit

0x4000 (E1803_CSTATE_WRITING_DATA) is set
• wait until card state returns “idle” again (by repeatedly sending ping-commands), the flag 0x4000 no

longer should be set in state flag SSSS
• check if an error occurred: when flags 0x8000 (E1803_CSTATE_WRITING_DATA_ERROR) is set in

state flag SSSS, downloading or writing or checksum calculation failed and the original file was not
replaced; for debugging in such a case the command “cglog” can be called repeatedly until the related
error text was found; when this error flag is set it can be reset only by using command 0x45 again

• reboot the controller
• check if the version of the firmware has changed

This command requires firmware 4 or newer.
C = 0x45
AAAA = the length of the firmware file in bytes
BBBB = checksum for verification of the downloaded data, only when this checksum is correct, the old firmware

file will be replaced; the checksum can be calculated using following function (C example code):

unsigned int crc32b(const char *buf,size_t len)
{
 int k;
 unsigned int crc=0xFFFFFFFF;

 while (len--)
 {
 crc^=*buf++;
 for (k=0; k<8; k++)
 crc=crc&1 ? (crc>>1) ^ 0x82f63b78 : crc>>1;
 }
 return ~crc;
}

EEEE = specifies the file which has to be overwritten by the current data download:
• 0 – overwrite file 0:/version.txt when downloading of data was successful
• 1 – overwrite file 0:/e1803.fwi when downloading of data was successful
• 2 – overwrite file 0:/e1803.dat when downloading of data was successful
• 3 – overwrite file 0:/e1803.cfg when downloading of data was successful

Set Position Offset
Set a positive or negative offset which then applies to all following position commands submitted via

command 0x00 or 0x01.
This offset is used until the controller is rebooted or until an other offset is set
This command requires firmware version 37 or newer.
C = 0x4D
AAAA = x-position offset in range -33554432..33554432
BBBB = y-position offset in range -33554432..33554432
EEEE = z-position offset in range -33554432..33554432

Reset the board
This function performs a warm reboot of the hardware and restarts the firmware. Reboot is done

immediately, means this command does not return anything but connection to the board will be interrupted as
soon as it has been sent.
C = 0xFF
AAAA = unused, set to 0
BBBB = unused, set to 0
EEEE = unused, set to 0

78

16 Supported CNC G-Code Commands

Starting with firmware version 2 E1803D supports G-Codes stored in a file on microSD card. A related CNC file
has to be placed at microSD card. The file extension decides how it is loaded and interpreted, all G-Code ASCII
files need to end with “.CNC”.

Starting with firmware version 3 E1803D supports G-codes sent to the controller via USB serial interface or
Telnet. Such a data transfer has to be started with command “cscnc” (for details please refer to description
above).

To allow fast and efficient processing of a CNC file within E1803D, some points have to be noticed. So in order
to improve loading performance it is recommended to:

• not to have lots of leading or trailing spaces
• not to make use of large comments
• have exactly one space between code and related parameter

Beside of that it is mandatory to
• have a space or CR/LF between two different codes (so e.g. “G21 G90” is valid but “G21G90” will result

in an error)
• have no space within a code or within a parameter of a code (so e.g. “G0 X-0.5 Y.75 Z10” is valid

but “G 0 X-0 .5 Y. 75 Z 10” is not and will result in an error)
• use a dot as separator in floating point variables (so e.g. “T1 F6000.0” is valid but “T1 F6000,0” is

not and will result in an error)

Following the G-Code commands are described which are supported.

16.1 General G-Code Characters

Following codes and identifiers are supported by E1803D G-Code interpreter:

Code Description Example

% Marks the begin of a G-Code file, this code is optional and does
not have any effect

; Begin of a comment, the remaining line is ignored;
in order to improve loading speed of a G-Code file comments
and spaces at the end of a line should be removed

G21 ; set unit to mm

() Encapsulate a comment, all data within the brackets are
ignored;
in order to improve loading speed of a G-Code file comments
and spaces at the end of a line should be removed

G21 (set unit to mm) G90
(use absolute
positioning)

G G-commands, please refer below for a description G1 X25.75 Y31 Z0.25

M M-commands, please refer below for a description M3

T T-commands, please refer below for a description T1 F3000

16.2 Supported “G”-codes

Following “G” codes and identifiers are supported by E1803D G-Code interpreter:

79

Code Description Example

G0 Jump to a specified position using predefined unit mm or inch
and with maximal speed or – when set with command M704 –
with the jump speed that was defined before. The position to
jump to is specified by two or three parameters X, Y and Z. This
movement is done with the laser turned off and by taking laser
and scanner delays into account.

G0 X0 Y0 Z0

G1 Move to a specified position using predefined unit mm or inch
and with a default or – when set with command M704 – with
the mark speed that was defined before. The position to move
to is specified by two or three parameters X, Y and Z. This
movement is done with the laser turned on and by taking laser
and scanner delays into account.

G1 X10 Y10.5 Z11.75

G4 When followed by a parameter „P“ execution is delayed by the
given time (in unit seconds)

G4 P0.002

G17 Select the XY plane for marking operations. This means, given
jump or movement coordinates in X and Y directions are
applied to X and Y plane, optional Z coordinate is applied to
remaining Z direction.

G17

G18 Select the ZX plane for marking operations. This means, given
jump or movement coordinates in X and Y directions are
applied to Z and X plane, optional Z coordinate is applied to
remaining Y direction.

G18

G19 Select the YZ plane for marking operations. This means, given
jump or movement coordinates in X and Y directions are
applied to Y and Z plane, optional Z coordinate is applied to
remaining X direction.

G19

G20 Set measurement unit to inch, means all positions handed over
e.g. with G0 or G1 will be followed by coordinates in inch. In
reality this has no effect for E1803D since calculation of
marking positions is done based on the given working area
which has to be defined with command M709

G20

G21 Set measurement unit to mm, means all positions handed over
e.g. with G0 or G1 will be followed by coordinates in mm. In
reality this has no effect for E1803D since calculation of
marking positions is done based on the given working area
which has to be defined with command M709

G21

G70 Set measurement unit to inch, means all positions handed over
e.g. with G0 or G1 will be followed by coordinates in inch. In
reality this has no effect for E1803D since calculation of
marking positions is done based on the given working area
which has to be defined with command M709

G70

G71 Set measurement unit to mm, means all positions handed over
e.g. with G0 or G1 will be followed by coordinates in mm. In
reality this has no effect for E1803D since calculation of
marking positions is done based on the given working area
which has to be defined with command M709

G71

G90 Enable absolute positioning, means all positions handed over
e.g. with G0 or G1 will be followed by absolute coordinates
according to the used coordinate system.

G90

G91 Enable relative positioning, means all positions handed over e.g.
with G0 or G1 will be followed by coordinates that are relative
to the previously used position in used coordinate system.

G90

80

16.3 Supported “M”-codes

Following “M” codes and identifiers are supported by E1803D G-Code interpreter, here all codes in range
700..799 are specific to the E1803D and contain all laser-related parameters and values:

Code Description Example

M2 End of program. When this code is found, parsing of the CNC
file is stopped and all following codes are ignored

M2

M3 Set laser on. This command does NOT turn on the laser but sets
the internal state to „on“. This can be used to set e.g. the mark
speed by a following command T1.

M3

M5 Set laser off. This command does NOT turn on or off the laser
but sets its internal state to „off“. This can be used to set e.g. the
jump speed by a following command T1.

M5

M700 Set the used laser type. This command is mandatory and has to
be called prior to every laser-related command. As parameter it
expects a decimal number which corresponds to the lasermode-
types E1803_LASERMODE_xxx as described in section „17.1
E1803D Easy Interface Functions“

M700 1073741831

M701 Set the frequency for the laser in unit Hz. This command is a
place holder and has no effect when used with E1803D. Instead
of that, the frequency has to be set lasertype-dependent via
pulse length parameter of commands M715 (stand-by
frequency) and M718 (mark or continuously running
frequency)

M701 25000

M702 Set the laser power in unit 1/1000%. This command has to be
used only in case of specific lasermodes. Resulting from the
mode the effect is different:
E1803_LASERMODE_YAG – used in case of an SPI-laser, the
power-value is set at analogue output AOut0
E1803_LASERMODE_MOPA – used in case of an IPG-laser, the
power-value is latched out at LP8 laserport

M702 75555

M703 Set laser-on-delay (at parameter A) and laser-off-delay (at
parameter B) in unit usec.

M703 A100 B200

M704 Set jump-speed (at parameter A) and mark-speed (at parameter
B) in unit mm/min.
By default, when no value has been specified, a jump speed of
1000 mm/sec and a mark speed of 10 mm/sec is assumed.

M704 A8936.592 B3000.00

M705 Set jump-delay (at parameter A), mark-delay (at parameter B)
and in-polygon-delay (at parameter C) in unit usec.

M705 A500 B200 C2500

M707 Set the working area left position (at parameter X), top position
(at parameter Y) and depth position (at optional parameter Z) in
unit specified with commands G70 or G71. Together with M709
this command specifies the valid working field, all positioning
parameters handed over with e.g. G0 and G1 need to be located
within this area.

M707 X-50 Y50

M708 Set jump-delay (at parameter A), mark-delay (at parameter B)
and variable polygon-delay (at parameter C) in unit usec.
Different to command M705 here the third parameter specifies
a variable delay which applies only to polygons at maximum
angle of 180°.

M705 A500 B200 C2500

81

Code Description Example

M709 Set the working area width (at parameter X), height (at
parameter Y) and depth (at optional parameter Z) in unit
specified with commands G70 or G71. Together with M707 this
command specifies the valid working field, all positioning
parameters handed over with e.g. G0 and G1 need to be located
within this area.
By default, when no value has been specified, a working area
size of 100x100x100 mm is assumed.

M709 X-50 Y50

M710 IPG pulse length value in unit nsec. This command is for future
use and currently does not have any effect.

M710 10000

M711 Set wobble distance in X-direction (at parameter X), Y-direction
(at parameter Y) in unit specified by commands G70 or G71 and
wobble frequency (at parameter C) in unit Hz. When all values
are set to 0, wobble marking is disabled completely.

M711 X2.5 Y2.5 C10000

M713 Set first pulse killer value (FPK) for YAG laser types using unit
usec

M713 10000

M714 Set simmer value in unit 1/1000% for SPI laser types, the
corresponding analogue voltage will be set at output AOut1

M714 55000

M715 Set standby-frequency (at parameter A) in unit Hz and standby-
pulsewidth (at parameter B) in unit nsec.

M715 A50000 B1000

M717 Set waveform number for SPI laser types latched out at LP8
laser port.

M717 17

M718 Set laser frequency (at parameter A) in unit Hz and pulsewidth
(at parameter B) in unit usec.

M718 A50000 B10000

M719 Switch main oscillator on (1) or off (0). This command can be
used together with SPI or IPG laser types prior to starting a
mark operation to turn MO on or afterwards to turn it off.
Required delays to turn on the MO are handled by E1803D
internally.

M719 1

16.4 Supported “T”-codes

Following “T” codes and identifiers are supported by E1803D G-Code interpreter:

Code Description Example

T1 Set jump or mark speed to be used with commands G0 and G1
in unit mm/min. Here it depends on a previous M-command if
this value specifies the mark-speed (M3) or the jump speed
(M5).

T1 F6000.0

82

17 Programming Interfaces
The libe1803.dll/libe1803.so shared library provides an own programming interface that gives the possibility to
access and control the E1803D scanner controller card.

Beside of that e1803inter.dll / libe1803inter.so come with some compatibility interfaces for different other
scanner cards like Scanlab™ RTC4™ and SCAPS™ USC1/2. They can be used to access E1803D scanner card
with existing software easily. To do that, the "e1803inter" shared library just has to be renamed to the library
name of the original vendor (like RTC4DLL.DLL, libslrtc4.so or sc_optic.dll). In order to operate E1803D card
with different than the default connection settings, recompilation of code to be reused is necessary. Here at the
very beginning and before initialisation a call to E1803_set_connection() has to be added in order to
specify the connection to the card. Apart from this single case, none of the different programming interfaces
should be mixed.

Sources of e1803inter.dll/libe1803inter.so are open and available for free, they can be found in public GIT
repository (available at https://sourceforge.net/p/oapc/code/ci/master/tree/).

17.1 E1803D Easy Interface Functions
The following functions belong to the native programming interface of E1803D scanner card and should be
used preferential in order to get access to all features and full performance of the scanner card. Header files
and additional data required for using this interface can be found online in our public GIT-repository at
https://sourceforge.net/p/oapc/code/ci/master/tree/libe1803/. There at
https://sourceforge.net/p/oapc/code/ci/master/tree/libe1803/libe1803_test/ also an example application can
be found that demonstrates the usage of the API.

Functions of E1803D Easy Interface are either stream commands that are executed in the order they are called,
or functions that are executed immediately.

The E1803D does NOT use the concept of two or more lists that have to be managed and switched by the
calling application. Here all stream commands simply are sent to the card without the need to provide some
additional management information. Output of data is started only when E1803_execute() is called or when
a card-internal threshold is exceeded. This card-internal triggered output of data can be held back by calling
function E1803_set_trigger_point() as very first so that marking starts only after an external trigger
signal was detected by the card or when the trigger point was released out of software by calling
E1803_release_trigger_point().

E1803D Easy Interface uses unit “bits” as base for all units and parameters. Since E1803D card internally uses
26 bits resolution for a better accuracy and to minimize round-off errors, all calculations are done with these 26
bits. So the working area always has a size of 26 x 26 bits equal to 67108864 x 67108864. Independent from
real resolution and output of hardware all calculations have to be done within this 26 bit range.

A typical flow of commands that makes use of the programming interface to output data at the scanner
controller card looks like this:

• E1803_set_connection() specifies → how to connect with the scanner controller card but does
not open the connection yet; this function returns an instance identifier which has to be used for all
following function calls

• E1803_load_correction() opens the connection to the scanner controller card (as specified in →
previous step) and optionally loads a correction table for the scanhead

• send scanner and laser configuration parameters
• send marking data via E1803_jump_abs() and E1803_mark_abs()
• E1803_execute() ensure marking really starts, this function typically to be called once at the end →

of every complete marking cycle only to ensure the data are really flushed to the controller
• E1803_get_card_state2() call this function in a loop to ensure marking really has started by →

checking one of the flags E1803_CSTATE_MARKING or E1803_CSTATE_PROCESSING are set

83

https://sourceforge.net/p/oapc/code/ci/master/tree/libe1803/libe1803_test/
https://sourceforge.net/p/oapc/code/ci/master/tree/libe1803/
https://sourceforge.net/p/oapc/code/ci/master/tree/

• E1803_get_card_state2() call this function in a loop to ensure marking really has ended by →
checking both flags E1803_CSTATE_MARKING and E1803_CSTATE_PROCESSING are not set any
more

• E1803_close() close the connection to the controller card and release all related resources→

A fully functional example application that shows how to use the programming interface is available in our
public GIT-repository at https://sourceforge.net/p/oapc/code/ci/master/tree/libe1803/libe1803_test/.

E1803D Easy Interface provides following functions:

17.1.1 General functions

This section describes all general functions related to accessing the scanner controller card, starting and
stopping operation of, checking the current operational state and other things more which are necessary to
control flow of data and commands,

unsigned char E1803_set_connection(const char *address)
This function has to be called as very first. It is used to specify the IP address where the card is

accessible at (in case of Ethernet connection) or the serial interface (in case of USB connection, “COMx” for
Windows and “/dev/ttyACMx” for Linux where “x” is the number of its interface). By default IP 192.168.2.254 is
used. This is the only function that has to be called in case of both, when compatibility functions and when the
E1803D easy function interface is used.
It returns a card index number that has to be used with all following functions (this is true for Easy Interface and
RTC-compatible functions).
PLEASE NOTE: calling this function does not open the connection to scanner controller card! This is done on
first call to E1803_load_correction()!

Parameters:
address – a char-array containing the IP in xxx.yyy.zzz.aaa notation or the name of the serial interface (COMx
or /dev/ttyACMx) to be used

Return: the board instance number or 0 in case of an error

void E1803_set_password(const char n,const char *ethPwd)
Sets a password that is used for Ethernet connection of E1803D card. The same password should be

configured on E1803D configuration file e1803.cfg with parameter "passwd" to add an additional level of
security to an Ethernet controlled card.
PLEASE NOTE: usage of this password does NOT provide enough security to control the card via networks that
are accessible by a larger audience, publicly or via Internet! Also when this password is set, the card always
should operate in secured, separated networks only!
Every card and every connection should use an own, unique password that can consist of up to 48 characters
containing numbers, lower- and upper-case letters and punctuation marks. Due to compatibility reasons no
language-specific special characters should be used.
When connected via USB serial interface, this password is ignored. In this case no authentication is done.

Parameters:
ethPwd – the password to be used to authorise at an E1803D card. To reset a local password for connecting to
a card that doesn't has an Ethernet password configured, hand over an empty string "" here

void E1803_close(unsigned char n)
Closes the connection to a card and releases all related resources. After this function was called, no

more commands can be sent to the card until E1803_set_connection() and
E1803_load_correction()/n_load_correction_file()/load_correction_file()/
ScSCIInitInterface() is called again.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

84

https://sourceforge.net/p/oapc/code/ci/master/tree/libe1803/libe1803_test/

int E1803_set_debug_logfile(const unsigned char n,const char *path,const
unsigned char flags)

This function can be used during development to check an own application regarding called commands
and their parameters. It lets libe1803 write all function calls into a logfile so that it is possible to evaluate the
real order of commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
path – full path to the file which has to be used as debug log file
flags – a bunch of OR-concatenated flags which specify what function calls have to be written into or filtered
from the log output; when 0x00 is specified here, the log file is kept quite small. When 0x01 is set, all motion-
related function calls are added too, when 0x02 is set, all calls which check the state of the card are added to
the log file.

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_sync(const unsigned char n,const unsigned int flags,const unsigned
int value)

This function sends a synchronisation value to the controller. As soon as marking reaches the related
position in stream, the value returned by function E1803_get_sync() changes to the value given here.
This command delays execution of the data by 0,5 usec, so it should not be used excessively. A value of
0xFFFFFFFF disables this function.
This function requires firmware version 3 or newer.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – currently unused, set to 0 for future compatibility
value – the value to be used as sync-identifier, here on every call a different value should be handed over in
order to differentiate what is returned by E1803_get_sync().

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

unsigned int E1803_get_sync(const unsigned char n)
Returns a sync-identifier as set by E1803_set_sync() as soon as the related position in stream was

reached.
This function requires firmware version 3 or newer.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

Return: the last sync-identifier which was identified and processed in stream of commands or 0xFFFFFFFF
when function is not used/turned off

int E1803_execute(unsigned char n)
Starts execution of all previously sent commands in case card is not already outputting these data. The

E1803D Easy Programming Interface does not use the concept of two or more lists that have to be handled and
switched by the calling application. Nevertheless the user has to ensure the card can start marking by calling
this function after all vector data have been sent to the card. Here it does not matter if the card is already
executing or not, subsequent calls to E1803_execute() do not influence marking behaviour. More than this:
in case very much data are sent to the card, it starts marking automatically after a defined fill level was reached.
Due to this automated, fill level dependent start it would not be necessary to call E1803_execute(). But in
situations where only very few data are sent to the card it is necessary to call this function always in order to
start marking also in these cases where the internal fill threshold is not reached and where the card would not

85

start marking immediately. Thus it is recommended to always call this function after all marking data have been
sent.
Marking is finished only when STOP is invoked or when the internal buffer is empty. When internal buffer runs
empty because subsequent data are not sent fast enough, an additional call to E1803_execute() is necessary
in order to output the remaining data.
This is not a stream command since it controls the already sent stream of commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_stop_execution(unsigned char n)
Stops the currently running execution as fast as possible and drops all data and commands that still may

be queued. Calling this function also would drop all laser and scanner parameters that are already sent to the
controller but not yet processed. Thus after calling this function it may be necessary to set scanner and laser
parameters again in order to ensure they are used for following operations.
This is not a stream command since it controls the current stream of commands.
PLEASE NOTE: this function should not be called on the off-chance “to be sure nothing is running”. The
command works asynchronously and causes a state-change which can have some unwanted side-effects when
it is used without a specific reason. So calling the function should be done only when the controller is really in
state marking/running, and after calling it, no other functions have to be used until the state
(E1803_get_card_state()) has changed back to idle. As the stop is done as fast as possible, the point, at
what the stream is stopped, is undefined. Means any function that has been called between the last call to
E1803_execute() and E1803_stop_execution() may not have an effect and probably needs to be
repeated.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_halt_execution(unsigned char n,unsigned char halt)
Halts or continues the processing and output of marking data. On halt=1 marking is stopped next

time the laser is turned off. Different to a full stop, no vector data are dropped. On continue (halt=0)
controller continues processing at the point where halt occurred. When marking is stopped with
E1803_stop_execution() the halt-condition is cleared too, means on next transmission of new marking
data they are processed without the need to explicitly continue last operation.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
halt – 1 to halt operation next time the laser is off, 0 to continue a previously halted operation

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_trigger_point(unsigned char n)
Specifies a point in data stream where execution has to stop until an external trigger signal (mark start)

or a manual release of this trigger point is detected. This expects a rising edge on ExtStart input or calling of
function E1803_release_trigger_point().
This is a stream-command, means it is executed at a point in stream that is relative to the other stream
commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

86

int E1803_release_trigger_point(unsigned char n)
This function should be called only when a previous call to E1803_set_trigger_point() was

done. It acts like an external trigger signal, releases the waiting condition and lets the controller start
processing. So this function provides some kind of software-simulated external start-signal.
ATTENTION: this command will not arrive at the controller when there is no more space left on it, means when
all controller-internal buffers are filled. So after a call to E1803_set_trigger_point() and during sending
of commands and data to the controller, application has to ensure there is some space left in controller's
buffers. This can be done by calling E1803_get_free_space() with flag E1803_FREE_SPACE_PRIMARY
for checking the available space in primary buffer. It is recommended to leave space for at least 10000 elements
in primary buffer in order to let a call to E1803_release_trigger_point() work properly.
When the buffers already have been filled completely, this function will no longer work and marking can be
started only by applying the ExtStart hardware signal.
This is not a stream-command, it is applied to controller immediately.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

unsigned int E1803_get_startstop_state(unsigned char n)
This function returns a bit pattern that informs about state of the start and stop input pins.

This is not a stream command since it returns the current state immediately. Here “current state” means the last
known state. When the state changes during this call, it may be possible the previous, no longer actual state is
given back since transmission of data from controller to host is done asynchronously and independent from a
call to this function.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

Return: a bit pattern specifying the current state:
• bit 0 and 1 (0x00000003) specify if the start input was set after last call of this function, when these

bits are set, a rising edge has been detected at this input; calling this function resets the internal state
of these bits, means when it is called again and when no new rising edge has been detected meanwhile,
these bits will be 0

• bit 2 and 3 (0x0000000C) specify if the stop input was set after last call of this function, when they are
set, a rising edge has been detected at this input; calling this function resets the internal state of these
bits, means when it is called again and when no new rising edge has been detected at top input
meanwhile, these bits will be low

• bit 12 (0x00001000) this bit signals the start input is low, as long as this bit is set no start input signal is
detected

int E1803_get_card_state2(const unsigned char n,unsigned int *state)
This function returns a bit pattern that informs about cards current operational state. Here “current

state” means the last known state. When the state changes during this call, it may be possible the previous, no
longer actual state is given back since transmission of data from controller to host is done asynchronously and
independent from a call to this function.
The card-states are enqueued internally in order to not to lose a “busy”-state which may be available for a very
short time only in case of very small and fast marking cycles. So every state change caused by the calling
application results in on state change returned by this function. This means for every marking cycle the
application has to wait for two state changes: first wait until this function signals “busy”
(E1803_CSTATE_MARKING|E1803_CSTATE_PROCESSING), next wait until this function signals “ready” (0).
During transfer of vector data and scanner/laser parameters this function should be called as rarely as possible:
every call of E1803_get_card_state() performs a fully cycle of transmission and receiving of data to and
from the controller. Dependent on the current transmission state this may result in submission of a small block

87

of data which does not uses the full available bandwidth. On excessive use of this function this can slow down
the whole transfer of data.
This is not a stream command, it returns the current state immediately.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
state – pointer to a variable where the card state has to be written to: a bit pattern of or-concatenated
constants specifying the current state:

• E1803_CSTATE_MARKING – card is currently marking
• E1803_CSTATE_PROCESSING – card has received some data that are enqueued for marking
• E1803_CSTATE_WAS_START_PRESSED – the ExtStart input was triggered, this flag is cleared after it

has bean read and is set again only when ExtStart was triggered again
• E1803_CSTATE_WAS_STOP_PRESSED – the ExtStop input was triggered, this flag is cleared after it

has bean read and is set again only when ExtStop was triggered again
• E1803_CSTATE_FILE_WRITE_ERROR – this flag is returned only in case stand-alone data are written

to the microSD card and in case an file error occurs during this procedure. As writing an EPR file is done
as asynchronous stream, errors during this procedure are not announced by the functions which are
called but only by this error state. For more information about writing of stand alone data please refer
to section “17.1.9 Writing of stand-alone data”

• E1803_CSTATE_WAIT_EXTTRIGGER – the controller is in state “marking” but is not yet processing
any data as it is waiting for an external trigger

• E1803_CSTATE_HALTED – the controller is in state “marking” but is not yet processing any data as it is
currently halted by function E1803_halt_execution()

• E1803_CSTATE_WAIT_INPUT – the controller is in state “marking” but is not yet processing any data
as it is waiting for a specific input pattern at the digital inputs

• E1803_CSTATE_SAC_READY – this flag applies only to stand-alone modes; it is similar to output
DOut0 and signals the controller has loaded a stand-alone file and is ready for marking

• E1803_CSTATE_SAC_MARKING – this flag applies only to stand-alone modes; it is similar to output
DOut1 and signals the controller is marking a loaded EPR file

• E1803_CSTATE_SAC_CTLXY – this flag applies only to stand-alone modes; it signals a “ctlxy”
command was received and the related mode is active

When the function returns an error code instead of E1803_OK, this value is undefined and can't be used.

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_delay(unsigned char n, double delay)
Pause marking for the given time/wait for execution of the next command in stream for the given time.

This is a stream-command, means it is executed at a point in stream that is relative to the other stream
commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
delay – time to wait until marking continues in unit usec, smallest possible value is 0,500 usec

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_get_free_space(unsigned char n,int buffer)
This function returns the space (in unit "commands") that is free in one of the buffers of E1803. Here

parameter buffer decides which buffer has to be checked.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
buffer – expects a constant which decides what buffer has to be checked, it has to be set to one of the
following values:

88

• E1803_FREE_SPACE_PRIMARY – return size of the primary buffer; it can be used to avoid memory on
host system is filled which may happen when vector data are sent to the controller while it's internal
buffers are already full. In this case these data would have been stored on host side consuming some
memory there. Using this function this problem can be avoided by sending commands only in case this
function returns a value that is (much) larger than 0.
The primary buffer that can be checked by using this value is one of two available buffers on E1803D
controller. The primary one has a size of 1 million and is used to feed the secondary buffer (with a size
of 20 million). So when this function returns 1000000, this does not mean the buffer is empty and no
vector data currently processed – they still may be stored in secondary buffer. So to check the
operational state of the controller, only function E1803_get_card_state2() can be used.
This buffer has also to be checked when function E1803_release_trigger_point() is used in
order to ensure the command can arrive at the controller. For a detailed description please refer to
explanation of E1803_release_trigger_point() above.

• E1803_FREE_SPACE_SECONDARY – return size of the secondary buffer; this one is filled by data from
primary buffer and contains raw commands (like single micro vectors that concatenate to a full vector
during output).

Return: -1 in case the function failed or the amount of free space in primary buffer.

void E1803_get_version(unsigned char n, unsigned short *hwVersion, unsigned
short *fwVersion)

Get the hardware and software version of the used board. It is recommended to call this function after
successful connect always and to check if used hardware and firmware version is at least a version that is
known to work with own software.
This is not a stream command, it is executed immediately and independent from all other commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
hwVersion – pointer to a variable where the hardware revision/version number is written into
fwVersion – pointer to a variable where the revision/version number of the firmware running on the board is
written into

const int E1803_get_library_version()
Returns an integer value which is an identifier specifying the version of this shared library. In decimal

notation this identifier uses format "Mmmrrr" where "M" is the major version, "m" the minor version number
and "r" the release count. The bigger the whole returned number is, the newer the library is.

int E1803_get_serial_number(const unsigned char n,char *serial,const int length)
Reads the serial number of the used board and returns it as 7 bit ASCII data.
This is not a stream command, it is executed immediately and independent from all other commands.
This function requires a firmware version 12 or newer.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
serial – pointer to a char-array where the serial number has to be stored into, this memory area needs to
have a size of at least 40 bytes
length – available length of the memory area where serial points to

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

89

int E1803_ana_read(const unsigned char n,const unsigned int flags,unsigned short
*a)

Read a value from one of the analogue inputs. Here the parameter flags decides which output has to
be accessed in which way:

• E1803_COMMAND_FLAG_ANA_AIN0 – read data from analogue input AIn0
• E1803_COMMAND_FLAG_ANA_AIN1 – read data from analogue input AIn1
• E1803_COMMAND_FLAG_ANA_AIN2 – read data from analogue input AIn2

The value returned in a is always a 16 bit value in range 0..65535 independent from the real resolution of the
hardware.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – flags specifying when the command has to be executed and which analogue output has to be set
a – value read from the analogue input, independent on the real resolution of the hardware, here always a 16
bit value is returned, means a value of 65535 would correspond to full input voltage of 5V
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

This function requires firmware version 4 or newer and the Multi-IO expansion board or the Intelli-IO
expansion board.

17.1.2 Laser and scanner related functions

This section describes all functions which are related to the scanhead and laser control and therefore have
influence on the signals at the laser interface and the XY2-100 connector. The related interfaces are described
in section „6.7 Laser Signals“ and section „6.6 Scanner Signals“.

int E1803_load_correction(unsigned char n, const char* filename, unsigned char
tableNum)

Opens connection to the card and loads a correction file to be used during vector data output. In case a
previously loaded correction table has to be flushed and no other correction has to be used, parameter
"filename" needs to be empty.
This function has to be called for first time on initialisation and before any vector data are sent to the board. It is
mandatory to call this function at least once since it establishes connection to E1803D card. So when no
correction file has to be used this function still has to be called but with an empty filename “”.
This function supports different correction table file formats directly and without previous conversion:

• BeamConstruct .bco high resolution files
• Scanlab .ctb and .ct5 files
• SCAPS .ucf files
• Raylase .gcd files
• Rofin .fcr files
• CTI/GSI .xml files
• Sunny .txt 5x5 point correction files
• Han’s .crt files

This is not a stream-command, means its data may be applied immediately and independent from current
stream state.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
filename – the full path to the correction file to be loaded from file system, when "" is specified here, a
previously used correction file is flushed and no/neutral correction is used as long as no other correction table
is given
tableNum – the 0-based correction table number these data have to be loaded for; it is possible to download
up to 16 different correction tables and to switch between them during operation using function
E1803_switch_correction()

Return: E1803_OK or an E1803_ERROR_- or RTC-compatible return code in case of an error

90

int E1803_switch_correction(unsigned char n, unsigned char tableNum)
Switches between up to 16 correction tables on the fly. When a table-number is given where no file was

downloaded before using function E1803_load_correction(), no correction is performed on all following
vector data.
This is a stream-command, means the new correction is applied to vector data sent to the card after this
command but NOT to already sent but not yet processed data. Thus on-the-fly switching between correction
tables is possible.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
tableNum – the 0-based table number of the correction that has to be used for all following vector data

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_xy_correction(const unsigned char n,const unsigned int flags const
double gainX, const double gainY,const double rot,const int offsetX,const int
offsetY,const double slantX,const double slantY)

Sets size correction factor and offset for X and Y direction of working area as well as a rotation.
This function will overwrite all corrections specified with E1803_set_matrix().
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – an optional set of OR-concatenated flags which specify the correction/modification of the output
further. E1803_COMMAND_FLAG_XYCORR_FLIPXY exchanges the X and Y coordinates and therefore flips the
output, E1803_COMMAND_FLAG_XYCORR_MIRRORX mirrors the X-coordinates,
E1803_COMMAND_FLAG_XYCORR_MIRRORY mirrors the output in Y-direction. If none of these additional
corrections is required, set flags to 0.
gainX – scale factor in x-direction, 1.0 means no scaling
gainY – scale factor in y-direction, 1.0 means no scaling
rot – rotation of whole working area in unit degrees
offsetX – offset in x-direction in unit bits, 0 means no offset
offsetY – offset in y-direction in unit bits, 0 means no offset
slantX – trapezoidal correction along X-axis in range -45..45°
slantY – trapezoidal correction along Y-axis in range -45..45°

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_z_correction2(const unsigned char n,const int flags,const double
gainZ,const int offsetZ,const unsigned int h,const double xy_to_z_ratio)

Set additional Z correction parameters.
This function may be used to adjust the Z-axis and in cases where third axis is used with a large Z working range
for an additional Z-focus-correction. Here additional deviation occurs when no F-Theta lens is used caused by
the fact that the beam is always sent from the centre of the scanhead – which causes some kind of projection
resulting in larger or smaller X and Y positions depending on the real Z height. This deviation can be adjusted by
an internal Z-focus-correction.
Beside of that, the Z-position can be adjusted via a gain factor and by using an offset, shifting it into a specific
direction
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands and changed values apply only to these vector data and coordinates, which are sent after
calling this function.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

91

flags – optionally set the flag E1803_COMMAND_FLAG_ZCORR_MIRRORZ to invert the orientation of the Z-
axis, for normal scanhead working in correct direction, this value can be left at 0
gainZ – scales the Z axis by the given factor, when set to 1.0, no scaling is applied to the Z-coordinates
offsetZ – shifts the Z-position into the given direction (using unit bits), when set to 0, no offset is applied to
the Z-coordinates
h – the vertical height from last mirror of the scanhead to the working area (Z-position 0 of working area) in
unit bits, when set to 0, the Z-focus-correction is disabled
xy_to_z_ratio – factor specifying the ratio between maximal horizontal working area size and maximal
vertical movement size. As an example: when the working area has a size of 100 x 100 mm and the Z-axis has a
maximum movement range of -20 mm .. 20 mm, the ratio to be set is 2,5 (100 mm horizontal divided by 40 mm
vertical); when this value is set to a ratio equal or smaller than 0.0, the Z-focus-correction is disabled

For more details about the Z-focus correction applied by setting the parameters h and xy_to_z_ratio,
please refer to the image below:

Here “h” is the height from the position where the beam hits the last mirror to the position of the working area
at z=0 position (in unit bits). “xy” is the width of the working area to be used together with the “z” range from
“z=min” to “z=max” to calculate the xy_to_z_ratio. All working area parameters like its width “xy” and the
“z”-range are expected to be the theoretical maximum of the full range, not the – possibly smaller – range used
in a specific setup.

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_speeds(unsigned char n, double jumpspeed,double markspeed)
Set scanner speed values to be used for all following vector data and until not replaced by other speed

values.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands. So values set here apply only to these vector data that are sent after this command.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
jumpspeed – scanner movement speed during jumps (movements when laser is off) in unit bits/msec and
range 1..4294960000
markspeed – scanner speed during mark (movements when laser is on) in unit bits/msec and range
1..4294960000

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_laser_delays(unsigned char n,double ondelay,double offdelay)

92

Set laser delay values to be used for all following vector data and until not replaced by other delay
values.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands. So values set here apply only to these vector data that are sent after this command.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
ondelay – laser on delay in unit microseconds, can be a negative or a positive value
offdelay – laser off delay in unit microseconds, must be a positive value

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_scanner_delays(const unsigned char n,const unsigned int
flags,const double jumpdelay,const double markdelay,const double polydelay)

Set scanner delays in unit microseconds. Smallest possible value and resolution is 0.5 microseconds.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands. So values set here apply only to these vector data that are sent after this command.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – here some flags can be set which add some further functional specifications and features to this
function. At the moment following flags are supported and can be OR-concatenated with each other:

• E1803_COMMAND_FLAG_SCANNER_VAR_POLYDELAY – when this flag is set, the value set via
polydelay is not applied statically to every point within a polygon, but it is set dynamically depending
on the angle between two lines; no angle (a straight line) results in no delay while an 180 degree angle
results in a full delay as set by value polydelay; this flag requires firmware version 2 or newer

jumpdelay – the jump delay value in unit microseconds
markdelay – the mark delay value in unit microseconds
polydelay – the in-polygon delay value in unit microseconds

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_scanner_mode(const unsigned char n, const unsigned int mode)
Sets the operation mode for the scanner, this function influences the communication mode with the

scanhead.
This function requires firmware version 10 or newer.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
mode – one of the following values can be set:

• E1803_SCANNERMODE_XY2_100 – standard and default mode, output is normal XY2-100 with 16 bit
resolution and normal 100 kHz output cycle clock

• E1803_SCANNERMODE_XY2_200 – output is XY2-200 with 16 bit resolution and 200 kHz output
cycle clock

93

• E1803_SCANNERMODE_XY2_100E – output is extended XY2-100E with 18 bit resolution and normal
100 kHz output cycle clock

• E1803_SCANNERMODE_XY2_200E – output is extended XY2-200E with 18 bit resolution and 200
kHz output cycle clock

• E1803_SCANNERMODE_SL – requires the “ NX-02 Extension Board” and enables output of scanner
control data using a two-wire serial protocol with 100 kHz output cycle clock; when this mode is
enabled, the connector of the SL Extension Board is used while the main D-SUB25 connector is turned
off

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_laser_mode(unsigned char n, unsigned int mode)
Sets the laser mode to be used for all following operations, this value influences the signals emitted at

the connectors of the card. This function has to be called prior to setting any other laser parameters (like
frequency, standby-frequency, power).
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
mode – the laser mode, here one of the following values is possible:

• E1803_LASERMODE_CO2 – for controlling CO2 lasers, this mode supports stand-by frequency at
LaserA output (to be set with function E1803_set_standby2()) and PWM-modulated frequencies
during marking and for power control (to be set with function E1803_set_laser_timing())

• E1803_LASERMODE_YAG1 – for controlling YAG lasers, this mode supports stand-by and Q-Switch
frequency at LaserA output (to be set with function E1803_set_standby2()) and a first pulse killer
signal at output LaserB that is issued on beginning of a mark together with the Q-Switch frequency (to
be set with function E1803_set_fpk()):

Here Q-Switch signal is started together with laser gate and FPK pulse. At end of mark when laser gate
is turned off stand-by frequency is emitted at LaserA.

• E1803_LASERMODE_YAG2 - for controlling YAG lasers, this mode supports stand-by and Q-Switch
frequency at LaserA output (to be set with function E1803_set_standby2()) and a first pulse killer
signal at output LaserB that is issued on beginning followed by Q-Switch frequency that starts when
FPK pulse has finished:

94

Here FPK and laser gate are started together. Q-Switch signal is started at end of FPK pulse. At end of
mark when laser gate is turned off, stand-by frequency and pulse-width is emitted at LaserA instead of
Q-Switch frequency.

• E1803_LASERMODE_YAG3– for controlling YAG lasers, this mode supports stand-by and Q-Switch
frequency at LaserA output (to be set with function E1803_set_standby2()) and a first pulse killer
signal at output LaserB that is issued on beginning followed by Q-Switch frequency that starts after a
freely configurable time period “yag3QTime”:

Here FPK and laser gate are started together. Q-Switch signal is started after yag3QTime has elapsed
according to the beginning of FPK pulse. This time value can be set using function E1803_set_fpk(). At
end of mark when laser gate is turned off, stand-by frequency and pulse-width is emitted at LaserA
instead of Q-Switch frequency.

• E1803_LASERMODE_CRF – for controlling lasers that require a continuously running frequency (like
fiber-lasers), this frequency is emitted at LaserA output and can be set and changed by calling function
E1803_set_standby2().

• E1803_LASERMODE_DFREQ – for controlling special lasers that require two frequencies, the second,
continuously running frequency is emitted at LaserB output and can be set with function
E1803_set_laserb()

• E1803_LASERMODE_MOPA – for fiber lasers which are driven by a main oscillator and power amplifier
and that are power-controlled via LP8 digital port and latch bit

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_laser(const unsigned char n,const unsigned int flags,const char
on)

Switches the laser on or off independent fro many mark or jump commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – handling flags specifying the behaviour of this command, E1803_COMMAND_FLAG_STREAM to use it
as stream command, E1803_COMMAND_FLAG_DIRECT to execute it immediately and independent on current
stream and execution state; in case E1803_COMMAND_FLAG_STREAM is used, please ensure this function call is
followed by other stream commands, elsewhere the laser is turned off for security reasons as soon as no more
data are available to process in order to not to let the laser fire while the card is waiting
on – set to 1 to turn the laser on or to 0 to turn it off

95

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_wobble(unsigned char n,unsigned int x,unsigned int y,double freq)
This function gives the possibility to not to let the laser beam follow the given path directly but to

rotate around the specified path and lasers current position. Depending on chosen wobble-parameters and
marking speed this results either in a thick or a sinusoidal line. This call sets wobble parameters to be used for
all following vector data and until not replaced by other wobble values or by 0 which disables wobble mode.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
x – wobble amplitude in x direction in units bits and range 1..10000000
y – wobble amplitude in y direction in units bits and range 1..10000000
freq – wobble frequency in Hz in range 1..25000

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_jump_abs(unsigned char n,int x,int y,int z)
Perform a jump (movement with laser turned off) to the given position. This causes a galvo movement

from current position to the one specified by this functions parameters using the jump speed and taking the
jump delay into account:

When laser was turned on before this function is called, laser is turned off at the beginning with a delay
specified by laser off delay (please refer to description of E1803_mark_abs() for a diagram showing laser off
delay too).
This is a stream-command, means it is executed at a point in stream that is relative to the other stream
commands. So values set here apply only to these vector data that are sent after this command.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
x – the x-coordinate in unit bits the scanner has to jump to (in range -33554431..33554432)
y – the y-coordinate in unit bits the scanner has to jump to (in range -33554431..33554432)
z – the z-coordinate in unit bits the scanner has to jump to (in range -33554431..33554432, requires a
hardware that is equipped with Z- channel)

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_mark_abs(unsigned char n,int x,int y,int z)

96

Perform a mark (movement with laser turned on) to the given position. This causes a galvo movement
from current position to the one specified by this functions parameters using the mark speed and taking the
mark delay into account. When laser was turned off before this function is called, laser is turned on at the
beginning with a delay specified by laser on delay:

This is a stream-command, means it is executed at a point in stream that is relative to the other stream
commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
x – the x-coordinate in unit bits the scanner has to move to (in range -33554431..33554432)
y – the y-coordinate in unit bits the scanner has to move to (in range -33554431..33554432)
z – the z-coordinate in unit bits the scanner has to move to (in range -33554431..33554432, requires a
hardware that is equipped with Z- channel)

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_get_pos(const unsigned char n,int *x,int *y,int *z)
This function returns the last position of the scanner:

• when an XY3-100 scanhead is connected, that provides its actual position, these values are returned
• when no such scanhead is connected, the last nominal position sent to the head are returned

The function needs the controller to be in idle-mode, means no marking operation is allowed to run in order to
get the position information.
Please note: when a correction file is set, and/or a matrix is set and/or an offset is set and/or any other function
is used which modifies the position data, the coordinates returned here are not the values which have been sent
with the last call to E1803_jump_abs() or E1803_mark_abs() or E1803_set_pos() as they have been
processed and modified by these correction functions. So while the jump/mark functions set position data
according to the desired coordinate system, the values returned by E1803_get_abs() are the real-world
coordinates at the hardware.
This function requires firmware version 16 or newer.

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_pos(unsigned char n,int x,int y,int z,unsigned char laserOn)
Perform a raw, immediate movement to the given position.

HANDLE WITH CARE! This function causes galvo movement to the given position immediately, without
respect to any mark or jump speed values, without micro-vectorisation or intermediate steps! This means it can
result in a very heavy movement for the galvos and in worst case it may cause some damage! Since the resulting
movement speed may be way too high for the used galvos, they may overshoot and need some time until the

97

desired position is reached. So this function is mainly intended to be used for very small position changes in
respect to the galvos current position.
This is a stream-command, means it is executed at a point in stream that is relative to the other stream
commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
x – the x-coordinate in unit bits the scanner has to jump to (in range -33554431..33554432)
y – the y-coordinate in unit bits the scanner has to jump to (in range -33554431..33554432)
z – the z-coordinate in unit bits the scanner has to jump to (in range -33554431..33554432, requires a
hardware that is equipped with Z- channel)
laserOn – specifies if the movement has to be done with laser turned on (1) or off (0)

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_pixelmode(const unsigned char n,const unsigned int mode,const
double powerThres,const unsigned int res)

Set the operational mode for E1803_mark_pixelline(). This function influences the behaviour
when marking a pixel line. This is a stream-command, means its parameters are applied at a point in stream that
is relative to the other stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
mode – pixel marking mode, this parameter can be set to:

• 0 – default mode, while marking a pixel line the controller tries to perform jumps when power
is below of the given threshold powerThres to save marking time

• E1803_PIXELMODE_NO_JUMPS – no jumps are performed, the given power threshold is
ignored and the full pixel line is done with marking speed; this mode is slower but can result in
more accurate and more exact images

• E1803_PIXELMODE_JUMP_N_SHOOT – marking of the line is no longer done with a
continuous movement but with a sequence “jump to position shoot jump to next position → →

 shoot jump to next position shoot...”; here the shoot-time is equal to the laser-off-delay → → →
minus laser-on-delay as set with function E1803_set_laser_delays()

• E1803_PIXELMODE_HW_POWER_CONTROL – when this flag is set, the controller card takes
care about setting the power for the pixels. This works only when a lasermode is chosen where
the scanner card supports native power control. When this flag is set, a power-callback,
handed over together with a call to E1803_mark_pixelline() is ignored.

• E1803_PIXELMODE_GATE_POWER_CONTROL – this is a special bitmap marking mode where
no real power control is supported. When this flag is set, the LaserGate output is toggled
depending on the required output power. Since this output supports only states LOW and
HIGH, this bitmap marking mode results in black and white images only

• E1803_PIXELMODE_JUMP_LEAVE_POWER – during bitmap marking, when no flag
E1803_PIXELMODE_NO_JUMPS is set, below of a specific power threshold a jump is
performed. By default, prior to such a jump, the laser power is set to 0 to handle faultily lasers
that have spurious emissions even when LaserGate is at LOW. For laser types, which do not
suffer from such emissions, this flag can be set. It leaves the last power value active also during
jumps, which saves some marking time. So this flag can be used for speed-optimising bitmap-
marking.

powerThres – this value is used only in default mode, when the marking power for some pixels is below of the
given value (in unit percent), a jump is performed to save marking time, during this jump the laser is off and no
marking is done
res – reserved, set always to 0

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

98

int E1803_mark_pixelline(const unsigned char n,int x,int y,int z,const int
pixWidth,const int pixHeight,const int pixDepth,unsigned int pixNum,const double
*pixels,E1803_power_callback power_callback,void *userData)

This function can be used to mark a single line of a bitmap image. Here horizontal, vertical and even 3D
bitmap lines (going into depth) can be marked. Direction and orientation of the line to be marked can be chosen
freely. A full image can be created by concatenating several lines. Power control during marking of such a
bitmap line is not limited to some specific power outputs, it can be fully customised via a callback function.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
x, y, z – the starting coordinates of the line in unit bits
pixWidth – the width of a single pixel (in unit bits), when this is set to a value greater or smaller than 0 while all
the others are equal 0, a horizontal line is drawn; the sign of the value specifies the marking direction
pixHeight – the height of a single pixel (in unit bits), when this is set to a value greater or smaller than 0 while
all the others are equal 0, a vertical line is drawn; the sign of the value specifies the marking direction
pixDepth – the depth of a single pixel (in unit bits, requires a 3D-capable scanhead), when this is set to a value
greater or smaller than 0 while all the others are equal 0, line goes into depth; the sign of the value specifies the
marking direction
pixNum – the number of pixel data contained in the array of intensity values handed over with the following
parameter
pixels – an array of double-values with a length equal the number of pixels specified with pixNum and with
an allowed range of 0.0..100.0 specifying the intensity; every entry of this array is equal to one pixel of the
bitmap, so a greyscale-pixelline with brightness values in range 0..255 has to be converted to values in range
0.0..100.0
power_callback – this is a callback function of type

int (*E1803_power_callback)(unsigned char n, double power, void *userData)

which is used to set the power for every pixel. There these E1803_-functions have to be called that belong to
the used laser type and set the power values according to it's hardware capabilities. Within the power callback
function only stream commands are allowed to be called. It is not possible to use external devices that are not
synchronous to E1803D command stream. The power callback has to return with E1803_OK when setting of
power was successful. In case of an error the appropriate error code has to be returned, the pixel marking
function will be cancelled in such a case too and does not finish marking of the line. Parameter n is the 1-based
board instance number specifying the board the power has to be changed for, power is the power to be set in
unit percent and userData are some free to use, custom data that can be handed over on call to
E1803_mark_pixelline().

userData – here some custom data can be handed over which are forwarded on and handed over at every call
of the power-callback

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_matrix(unsigned char n, double m11, double m12, double m21, double
m22)

Specify a 2x2 matrix that contains scaling and rotation corrections for the output. When a given matrix
element parameter has a value smaller or equal -10000000 it is ignored and the previous/default value is kept
at this position in matrix.
This function will overwrite all corrections specified with E1803_set_xy_correction().
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
m11 – first matrix element in first row
m12 – second matrix element in first row
m21 – first matrix element in second row
m22 – second matrix element in second row

99

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

unsigned int E1803_get_head_state(const unsigned char n,const unsigned int
flags)

Returns head status information in case the connected scanhead provides such data via STATUS signal
of XY2-100 interface. When the head does not provide such information or returns invalid data or a proprietary
data format, the function returns 0xFFFFFFFF. Otherwise the returned value can be AND-concatenated with
HEAD_STATE_MASK to find out what kind of head is connected: a resulting value of HEAD_STATE_2D_HEAD
identifies a 2D scanhead, HEAD_STATE_3D_HEAD a 3D scanhead. Depending on this, the returned value
contains the following state information:

Bit HEAD_STATE_2D_HEAD 2D Head Remarks HEAD_STATE_3D_HEAD 3D Head Remarks

19 / C2 0 Identification bit 0 Identification bit

18 / C1 1 Identification bit 0 Identification bit

17 / C0 1 Identification bit 1 Identification bit

16 / S15 Power state X servo ready

15 / S14 Temperature state X temperature state

14 / S13 In-field X tracking error

13 / S12 X-position ACK 0

12 / S11 Y-position ACK Y servo ready

11 / S10 1 Y temperature state

10 / S9 0 Y tracking error

9 / S8 1 0

8 / S7 Power state Z servo ready

7 / S6 Temperature state Z temperature state

6 / S5 In-field Z tracking error

5 / S4 X-position ACK 0

4 / S3 Y-position ACK X channel parity error

3 / S2 1 Y channel parity error

2 / S1 0 Z channel parity error

1 / S0 1 CLK channel error

0 / Par x Always 0 Parity bit (even)

The exact usage of these fields depends on the used head, so for further details please refer to the related
scanhead manual.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – when flag E1803_COMMAND_FLAG_HEAD_STATE_RAW is set here, the state-information from the
head are returned as they are received. When this flag is not used, the returned data are checked and filtered –
only in case they fit to the bit patterns shown above, the received data are returned, elsewhere the error
information 0xFFFFFFFF is given back.

Return: the received (filtered or raw) XY2-100 state data as received from the head or 0xFFFFFFFF in case of
an error

int E1803_set_laser_timing(unsigned char n, double frequency, double pulse)

100

Set the frequency and pulse-width to be used during marking at LaserA output of laser connector.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
frequency – emitted frequency in unit Hz and in range 25..20000000 Hz
pulse – pulse width in usec, this value has to be smaller than period length that results out of frequency

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_standby2(const unsigned char n,const double frequency,const double
pulse, const bool force)

Set the frequency and pulse-width to be used during jumps, as stand-by frequency or as continuously
running frequency at LaserA output of laser connector.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
frequency – emitted frequency in unit Hz and in range 25..20000000 Hz. When a value of 0 is given, the
frequency at LaserA output is turned off at end of mark.
pulse – pulse width in usec, this value has to be smaller than period length that results out of frequency
force – when set to true, the new stand-by frequency is not applied the next time the laser is turned off, but
immediately

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_laserb(const unsigned char n,const double frequency,const double
pulse)

Set the frequency and pulse-width to be used at LaserB output of laser connector. To use LaserB as
second frequency output, a laser mode with flag E1803_LASERMODE_DFREQ has to be configured.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
frequency – emitted frequency in unit Hz and in range 25..20000000 Hz
pulse – pulse width in usec, this value has to be smaller than period length that results out of frequency

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_set_fpk(unsigned char n, double fpk, double yag3QTime)
Set the parameters for first pulse killer signal that is emitted via laser connector whenever the laser is

turned on; this applies to YAG-modes only and is emitted as one single pulse at LaserB output.
This is a stream-command, means its parameters are applied at a point in stream that is relative to the other
stream commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
fpk – the length of the first pulse killer signal in usec
yag3QTime – the length of the first pulse killer signal in usec, this value is used only when laser mode
E1803_LASERMODE_YAG3 is set, elsewhere it is ignored

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

101

int E1803_lp8_write(const unsigned char n,const unsigned int flags,const
unsigned char value)

Sets the LP8_0..LP8_7 outputs of 8 bit laser port of laser interface connector without touching the
related latch output. Total execution time of this command is 1 usec.
Depending on the value of parameter flags this is either a stream-command (means it is executed at a point in
stream that is relative to the other stream commands) or a direct command (means it is executed immediately
on calling).

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – handling flags specifying the behaviour of this command, E1803_COMMAND_FLAG_STREAM to use it
as stream command, E1803_COMMAND_FLAG_DIRECT to execute it immediately and independent on current
stream and execution state
value – the 8 bit value to be set at LP8 port
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_lp8_write_latch(unsigned char n, unsigned char on, double
delay1,unsigned char value, double delay2,double delay3)

Sets the LP8 8 bit laser port of laser interface connector with freely definable delays and toggles the
related latch output automatically; calling this function causes the following sequence of commands:

• turn latch bit on/off
• wait for delay1 usecs
• set LP8
• wait for delay2 usecs
• turn latch bit off/on
• wait for delay3 usecs

The whole execution time of this sequence is 1.5 usecs for setting LP8 outputs and toggling latch plus delay1
plus delay2 plus delay3.
This is a stream-command, means it is executed at a point in stream that is relative to the other stream
commands.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
on – specifies if the latch bit has to be set to HIGH (on=1) or LOW (on=0) on first step, on second step it will
toggle to value !=on
delay1 – delay to be issued after setting/clearing the latch bit for the first time
value – the 8 bit value to be set at LP8 port
delay2 – delay to be issued after setting LP8 output and before clearing/setting the latch bit
delay3 – delay to be issued after clearing/setting the latch bit for the second time

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_lp8_write_mo2(const unsigned char n, const unsigned int flags, const
unsigned char on)

Sets the main oscillator output MO of laser interface connector to be used with e.g. fiber lasers.
Depending on the value of parameter flags this is either a stream-command (means it is executed at a point in
stream that is relative to the other stream commands) or a direct command (means it is executed immediately
on calling).

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – handling flags specifying the behaviour of this command, E1803_COMMAND_FLAG_STREAM to use it
as stream command, E1803_COMMAND_FLAG_DIRECT to execute it immediately and independent on current
stream and execution state
on – the state the MO output has to be switched to; PLEASE NOTE: the main oscillator depends on the current
internal state of the laser. Thus turning it on is always possible but turning off the MO is possible only when the

102

controller is not yet handling the laser-off delay, means it is not possible as long as the laser is turned on. In such
a case this command is ignored.

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_ana_write(const unsigned char n,const unsigned int flags,const
unsigned short a)

Write a value to one of the analogue outputs. Here the parameter flags decides which output has to
be accessed in which way:

• E1803_COMMAND_FLAG_ANA_AOUT0 – send data to analogue output AOut0
• E1803_COMMAND_FLAG_ANA_AOUT1 – send data to analogue output AOut1

One of these flags can be combined with E1803_COMMAND_FLAG_STREAM to use it as stream command or
with E1803_COMMAND_FLAG_DIRECT to execute it immediately and independent on current stream and
execution state. Parameter a needs to be always a 16 bit value independent from the real resolution of the
hardware.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – flags specifying when the command has to be executed and which analogue output has to be set
a – value to be set at the analogue output, independent on the real resolution of the hardware, here always a 16
bit value has to be given, means a value of 65535 would correspond to full output voltage of 10V
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

17.1.3 Digital interface functions

The following section describes all functions which can be used to describe data at the digital interface as
described in section „6.8 Digital Interface“ and section „6.8.1 Marking On-The-Fly Signals“.

int E1803_digi_write(const unsigned char n,const unsigned int flags,const
unsigned int value,const unsigned int mask)

Sets the 8 bit digital output port.
Depending on the value of parameter flags this is either a stream-command (means it is executed at a point in
stream that is relative to the other stream commands) or a direct command (means it is executed immediately
on calling).
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – handling flags specifying the behaviour of this command, E1803_COMMAND_FLAG_STREAM to use it
as stream command, E1803_COMMAND_FLAG_DIRECT to execute it immediately and independent on current
stream and execution state
mask – specifies which of the bits in "value" have to be used for setting and clearing output data, only these bits
that are set to 1 in mask are changed according to the given value
value – the 8 bit value to be set at digital out port

Return: E1803_OK or an E1803_ERROR_ return code in case of an error

int E1803_digi_pulse(const unsigned char n, const unsigned int flags, const
unsigned int in_value, const unsigned int mask, const unsigned int pulses, const
double delayOn, const double delayOff)

Send a sequence of pulses to the 8 bit digital interface. When the controller works with a firmware
version 5 or later, this operation causes nearly no data transmission load.
This command is available as stream-command only (means it is executed at a point in stream that is relative to
the other stream commands).
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – currently only E1803_COMMAND_FLAG_STREAM is supported here

103

mask – specifies which of the bits in "value" have to be used for setting and clearing output data, only these bits
that are set to 1 in mask are changed according to the given value
value – the 8 bit value to be set at digital out port
pulses – specifies how often the output has to be set/cleared
delayOn – the delay (in unit usec) which has to be issued every time after setting the output, the minimal
resolution of this value is 0,5 usec
delayOff – the delay (in unit usec) which has to be issued every time after clearing the output, the minimal
resolution of this value is 0,5 usec

Return: E1803_OK or an E1803_ERROR_ return code in case of an error

int E1803_digi_read3(const unsigned char n,const unsigned char flags,unsigned
int *value)

Reads the 8 bit digital input port.
This is not a stream-command, means it is executed immediately and returns current state of the digital inputs.
When parameter flags is set to 0, the state of the digital inputs is requested actively which results in a
separate data transmission to the controller card. On excessive use of this command, that may slow down
communication with the controller dramatically. Alternatively flags can be set to
E1803_COMMAND_FLAG_PASSIVE which does not cause such a request. Instead of this the last known state of
the digital inputs is returned by this function based on the last regular feedback from the controller or based on
the last call to this function with this passive-flag not set. So when this flags is used, the returned value may be
several hundred milliseconds old.
When marking on the fly is enabled using function E1803_digi_set_motf2(), digital inputs 0 and 1 (and
optionally also digital inputs 2 and 3 in case of 2D marking on-the-fly) are used for MOTF-encoder and
therefore not available as standard inputs. In such a case state of these bits is undefined and does not reflect
the current input state caused by the external encoder.

Parameters:
n - the 1-based board instance number as returned by E1803_set_connection()
value – pointer to a variable where the current digital input state has to be written into.
When the function returns an error code instead of E1803_OK, this value is undefined and can't be used.

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_digi_wait(unsigned char n,unsigned long value,unsigned long mask)
Stop execution and output of data until the given bitpattern was detected at digital inputs of digital

interface connector. Here parameter mask specifies which of the bits at the input have to be checked, they have
to be set to 1. These bits within mask that need to be ignored have to be set to 0. Parameter value itself
defines the states of the bits that has to be detected at the input to continue processing of data. All bits of value
that correspond to bits of mask, that are 0, are ignored.

Parameters:
n - the 1-based board instance number as returned by E1803_set_connection()
value – the expected bitpattern at digital input
mask – specifies which of the input bits and value bits have to be used for comparison

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_digi_set_motf2(const unsigned char n,const unsigned int flags,const
double motfX,const double motfY)

Disables or enables marking on-the-fly functionality and specifies factors for X- and Y-direction. When
this function is called with values for motfX or motfY greater than 0, marking on-the-fly is enabled and digital
inputs 0 and 1 of the digital interface are no longer available as general purpose inputs. Now they are used as
decoder inputs for a 90 degree phase shifted encoder signal for marking on-the-fly functions. When both

104

parameters motfX and motfY are set to 0, marking on-the-fly is disabled and inputs 0 and 1 no longer work as
encoder inputs.
When tune flag “2” is set (for 2D marking on-the-fly, please refer to description of e1803.cfg parameters above),
the two factors for X and Y are assigned to separate encoder inputs. Here factor for X applies to values received
on digital inputs 0 and 1 and factor for Y applies to values received on digital inputs 2 and 3.
Depending on value of parameter flags this is or is not a stream-command, means it switches states of digital
inputs 0 and 1 (plus optionally 2 and 3) and marking on-the-fly functionality at the related position in stream or
immediately.
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – when flag E1803_COMMAND_FLAG_DIRECT is set, the new MOTF-factors are applied immediately,
when flag E1803_COMMAND_FLAG_STREAM is used instead, the command acts as stream-command and sets
the new MOTF-factors as soon as this command is due in current stream of command.
motfX – marking on-the-fly factor for X-direction in unit bits per encoder increment
motfY – marking on-the-fly factor for Y-direction in unit bits per encoder increment
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_digi_set_motf_sim(unsigned char n, double motfX, double motfY)
Disables or enables simulated marking on-the-fly functionality and specifies factors for X- and Y-

direction. When this function is called with values for motfX or motfY greater than 0, simulated marking on-
the-fly is enabled and internal 100 kHz signal generator is used to create static marking on-the-fly pulses in
positive direction. A possibly enabled on-the-fly operation using external signals on digital inputs 0 and 1 of
digital interface connector is disabled. When both parameters motfX and motfY are set to 0, marking on-the-
fly is disabled completely.
This is not a stream-command, means it enables simulated marking on-the-fly functionality immediately.
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
motfX – marking on-the-fly factor for X-direction in unit bits suitable for to be simulated movement-speed on
100 kHz encoder counting frequency
motfY – marking on-the-fly factor for Y-direction in unit bits suitable for to be simulated movement speed on
100 kHz encoder counting frequency
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_digi_wait_motf(const unsigned char n, const unsigned int flags, const
double dist)

Halts the current marking operation for a given distance of the on-the-fly encoder. Different to
E1803_delay() this function does not use a time to wait until marking is continued but a distance specified
by parameter dist and measured by the connected encoder. To use this function marking on-the-fly has to be
enabled by calling E1803_digi_set_motf() or E1803_digi_set_motf_sim() before.

This command is useful for applications where several vector data have to be marked which in total are larger
than the available working area (e.g. marking long texts on a cable). For this the vector data to be marked have
to be concatenated in suitable pieces where each is smaller than the available working area. Then these pieces
can be marked consecutively with following sequence of commands:

1. E1803_set_trigger_point() (used only once at the very beginning to define the starting point
and to initialise internal MOTF counters). This trigger point later has to be released either by applying
an ExtStart signal or by calling function E1803_release_trigger_point()

2. E1803_digi_wait_motf() to wait for the beginning of the first piece of vector data to be marked,
the given distance is equal to the distance from the starting point in 1)

3. E1803_jump_abs()/E1803_mark_abs() for vector data of character to be marked; here one piece
of the whole set of vector data has to be sent to the controller

4. E1803_digi_wait_motf() to wait for the distance until next set of vector data; here the distance
between the starting points of two pieces of vector data has to be given

5. continue at 3) until all pieces of vector data have been sent

105

This is a stream-command, means it is executed at a point in stream that is relative to the other stream
commands.
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – specifies how the distance value is handed over, with E1803_COMMAND_FLAG_MOTF_WAIT_INCS a
value in unit “encoder increments” is expected, with E1803_COMMAND_FLAG_MOTF_WAIT_BITS a distance in
unit “bits” is expected. In second case the X-on-the-fly factor of a preceding call to E1803_digi_set_motf()
or E1803_digi_set_motf_sim() is used.
dist – the distance to wait for until marking has to be completed, the unit of this value is specified with
preceding parameter flags
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_digi_set_motf_powerctl(const unsigned char n,const unsigned int
flags,const double motfSpeed,const double lowValue, const double highValue)

Perform a marking on-the-fly speed-dependent power adjustment. This function uses the currently set
power as well as the handed over nominal speed to calculate the real power based on the real marking on the
fly speed. So to use this functionalities, following sequence of commands is necessary:
- set the on-the-fly factors/enable marking on the fly by calling E1803_digi_set_motf()
- set the current power, here dependent on the used laser type the appropriate function has to be called
- call E1803_digi_set_motf_powerctl() to define automatic power adjustment parameters
This function requires firmware version 7 or newer.
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – specifies the method of power control/the power control output which has to be used. Here exactly
one of the following flags can be used:
- E1803_COMMAND_FLAG_ANA_AOUT0 – to use analogue output A0 for power control
- E1803_COMMAND_FLAG_ANA_AOUT1 – to use analogue output A01for power control
- E1803_COMMAND_FLAG_FREQ_LASERA – this is not really a power control method but enables the option to
change the frequency of LaserA output while the pulse-pause-ratio of the related waveform is kept constant
motfSpeed – nominal speed (in unit bits/sec) which corresponds to the current nominal power set in previous
call, when the real, measured marking on-the-fly speed rises above this value, the related power output is
adjusted to also ensure a higher power output, when the actual, measured MOTF-speed becomes lower than
the nominal motfSpeed, power is adjusted to lower values
lowValue – lower clipping value, the automatically adjusted power will never become smaller than this
highValue – upper clipping value, the automatically adjusted power will never become bigger than this
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_digi_set_mip_output(unsigned char n,unsigned int value,unsigned int
flags)

This function can be used to specify which of the digital outputs has to be used for signalling "marking
in progress". When value is set to 0xFFFFFFFF, this function is disabled and scanner controller card does not
provide this signal automatically. When the number of the digital output (in range 0..7) is given as value, the
related digital output pin is used for "mark in progress" signal.
PLEASE NOTE: here the number (means the count) of one specific output pin has to be given, not a bitpattern
specifying one or more pins!
During operation the selected "mark in progress" pin is HIGH as long as the scanner is moving and/or the laser
is on and/or a delay is processed and when marking parameter are processed between these operations. It
becomes LOW as soon as no more marking data are available and current operation is stopped or when scanner
is waiting for an external trigger signal (ExtStart).
This is not a stream-command, when it is called it is applied to current configuration immediately.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
value – the number of the digital output to be used for this signal
flags - currently unused, set always to 0 for compatibility
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

106

int E1803_digi_set_wet_output(const unsigned char n,const unsigned int
value,const unsigned int flags)

This function can be used to specify which of the digital outputs has to be used for signalling "waiting
for external trigger". When value is set to 0xFFFFFFFF, this function is disabled and scanner controller card
does not provide this signal automatically. When the number of the digital output (in range 0..7) is given as
value, the related digital output pin is used for "waiting for external trigger" signal.
PLEASE NOTE: here the number (means the count) of one specific output pin has to be given, not a bitpattern
specifying one or more pins!
During operation the selected "waiting for external trigger" pin is HIGH as long as the controller is waiting for
an external trigger to be applied at ExtStart input. It becomes LOW as soon as this signal has been detected or
when current operation is stopped.
This is not a stream-command, when it is called, it is applied to current configuration immediately.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
value – the number of the digital output to be used for this signal
flags – currently unused, set always to 0 for compatibility

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

17.1.4 Serial interface functions

Following functions are described which can be used to access the serial interface as described in section “6.9
Serial Interface”

int E1803_uart_write(const unsigned char n,const unsigned int flags,const char
*sendData,const unsigned int in_length,unsigned int *sentLength)

Send data to RS232/RS485 serial interface using the serial interface parameters which are configured
in e1803.cfg configuration file. This command is executed depending on the given flags, means the data are sent
to the serial interface independent from the context the function has to be called within or in context of the
current stream.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – here pairs of flags a) and b) have to be OR-concatenated with each other to specify how to transmit
the data exactly:

a) E1803_COMMAND_FLAG_UART1 – this flag specifies which UART interface has to be used for
transmitting data, at the moment only one UART interface exists, so only this flag can be set and has
always to be set

b) E1803_COMMAND_FLAG_STREAM – when this flag is combined with the flag from a), data are
enqueued to the current stream and transmitted depending on its position within that stream

b) E1803_COMMAND_FLAG_DIRECT – when this flag is combined with the flag from a), data are
transmitted immediately (means as fast as possible and not within the regular stream of data)

b) E1803_COMMAND_FLAG_ASYNC – when this flag is combined with the flag from a), data are
transmitted asynchronously (means as soon as the next package of data is sent to the controller which
either is done on E1803_execute() or when enough other data are handed over, on arrival at the
controller these data are sent to the UART interface immediately and not within the regular stream of
data); in other words, this is a specific variant of E1803_COMMAND_FLAG_DIRECT where data are
transmitted immediately but the controller doe not wait for the response to arrive

sendData – pointer to byte-array which contains the data which have to be sent
in_length – length of the data in sendData

107

sentLength – pointer to a variable where the amount of data is returned which really has been sent by this
function; when a different return code than E1803_OK is given back, this value is undefined.
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_uart_read(const unsigned char n,const unsigned int flags,char
*recvData,const unsigned int maxLength,unsigned int *receivedLength)

Receive data from RS232/RS485 serial interface using the serial interface parameters which are
configured in e1803.cfg configuration file. This command is executed immediately, means it checks for data
arrived at serial interface independent from the context the function has to be called within.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – here pairs of flags a) and b) have to be OR-concatenated with each other to specify how to receive the
data exactly:

a) E1803_COMMAND_FLAG_UART1 – this flag specifies which UART interface has to be used for
receiving of data, at the moment only one UART interface exists, so only this flag can be set
b) E1803_COMMAND_FLAG_DIRECT – when this flag is combined with the flag from a), data are
tried to be read immediately, this means the function does not return until some data could be read
from the serial interface or until a timeout occurred
b) E1803_COMMAND_FLAG_ASYNC – when this flag is combined with the flag from a), data are
received asynchronously, this means when no data are available on call of the function, it returns
immediately with E1803_OK and setting receivedLength to 0. In such a case the function has to be
called later again in order to receive some data. As soon as some data have arrived, receivedLength
specifies the size of these data on return of the function

recvData – pointer to byte-array where received data have to be stored into, this buffer should have a size of
at least 513 bytes
maxLength – maximum number of bytes the buffer specified by recvData is able to store
receivedLength – pointer to a variable where the amount of data is returned which really has been received
by this function; when a different return code than E1803_OK is given back, this value is undefined.
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

17.1.5 Intelli-IO extension functions (IO-mode)

Following functions require the Intelli-IO Extension Board as described in section “10.2 Intelli-IO Interface in
IO mode”. They can be used to access the digital IOs of this board. The analogue inputs of the Intelli-IO board
are not directly subject to this extension and therefore can be read by general function E1803_ana_read()
as described above. All functions described here require firmware version 5 or newer.

int E1803_ext_digi_write(const unsigned char n,const unsigned int flags,const
unsigned int in_value,const unsigned int mask)

Sets the second 8 bit digital output port which is located on the Intelli-IO extension.
Depending on the value of parameter flags this is either a stream-command (means it is executed at a point in
stream that is relative to the other stream commands) or a direct command (means it is executed immediately
on calling).
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – handling flags specifying the behaviour of this command, E1803_COMMAND_FLAG_STREAM to use it
as stream command, E1803_COMMAND_FLAG_DIRECT to execute it immediately and independent on current
stream and execution state
mask – specifies which of the bits in "value" have to be used for setting and clearing output data, only these bits
that are set to 1 in mask are changed according to the given value; this parameter requires a firmware version
12 or newer, elsewhere it is ignored and the function assumes a mask-value of 0xFFFFFFFF which results in an
output bitpattern which is exactly the given value with all bits set/cleared
value – the 8 bit value to be set at digital out port

Return: E1803_OK or an E1803_ERROR_ return code in case of an error

108

int E1803_ext_digi_read(const unsigned char n,const unsigned int flags,unsigned
int *value)

Reads the second 8 bit digital input port which is located on the Intelli-IO extension. Since this
extension board provides only six input bits, the upper two bits always will be 0.
This is not a stream-command, means it is executed immediately and returns current state of the digital inputs.
When parameter flags is set to 0, the state of the digital inputs is requested actively which results in a
separate data transmission to the controller card. On excessive use of this command, that may slow down
communication with the controller dramatically. Alternatively flags can be set to
E1803_COMMAND_FLAG_PASSIVE which does not cause such a request. Instead of this the last known state of
the digital inputs is returned by this function based on the last regular feedback from the controller or based on
the last call to this function with this passive-flag not set. So when this flags is used, the returned value may be
several hundred milliseconds old.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
value – pointer to a variable where the current digital input state has to be written into.
When the function returns an error code instead of E1803_OK, this value is undefined and can't be used.

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

17.1.6 Intelli-IO extension functions (motion mode)

Following functions require a Intelli-IO Extension Board as described in section “10.3 Intelli-IO Interface in
motion mode” and can be used to control motion operations. Here command options that set a value or start a
motion are always available in two options: as stream (flag E1803_COMMAND_FLAG_STREAM is set) or as direct
command (flag E1803_COMMAND_FLAG_DIRECT is set). Stream-commands are always executed in the order
they are sent to the controller and the controller always waits until one motion has been finished before any
other command in this stream is executed. Direct commands are executed immediately, here it is up to the user
to wait until a motion operation has ended. This wait-operation is the same as for every other scanner
operation: first one has to wait until operation started, next one has to wait until operation has ended. It is
mandatory to always wait for both state changes.
All the functions described here require at least firmware version 6.

int E1803_motion_set_steps(const unsigned char n, const unsigned int flags,const
double steps)

Set the factor which defines the relation between steps (increments) of the used stepper motor and the
distance that it travels. This value needs to be specified prior to all other operations in order to allow correct
calculation of all distances and speeds as expected by the other functions as described below. For the E1803
motion extension no default value exists, so if no factor is set, motion operations are done with an undefined,
random value which may lead to unexpected results.
The E1803 motion extension programming interface always makes use of real distances (mostly in unit mm) and
does not expect the calling application to do the conversion from increments to mm.
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or

E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,
E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3)

steps – factor which defines relation between stepper motor steps and travel distance (in unit increments/mm
for longitudinal movements or increments/degree for rotational movements)

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

109

int E1803_motion_set_pulsewidth(const unsigned char n, const unsigned char
width)
Set the width of the setp-pulses to the given value in unit usec. By default this value is set to 10 usec which
should fit for most applications. Setting it to smaller typically values does not make any sense, setting larger
values may be necessary in case of some slo stepper motor drivers. In this case please note: larger pulse with
values result in a smaller maximum step frequency as these large pulses may overlap each other in such cases
and result in a permanent HIGH-signal instead of a step-frequency.
This function requires firmware version 11 or newer.
Parameters
n – the 1-based board instance number as returned by E1803_set_connection()
width – the new pulsewidth to be used in range 10..200 usec
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_set_limits(const unsigned char n,const unsigned int flags,const
double llimit,const double hlimit,const unsigned double in_slimit)

Set motion limits for axis operations. When any follow-up command tries to set values beyond these
limits, these values are clipped to the allowed range set with this function.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or

E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,
E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3)

llimit – lower motion limit (in unit mm or degrees)
hlimit – upper motion limit (in unit mm or degrees)
in_slimit – speed limit (in unit mm/sec or degrees/sec)
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_set_accel(const unsigned char n,const unsigned int flags,const
double accel)

Set the acceleration to be used for start and stop for all motion operations and for the specified axes.
Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or

E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,
E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3)

accel – acceleration (in unit mm/sec2 or degrees/sec2)
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_set_speed(const unsigned char n,const unsigned int flags,double
speed)

Set the speed for the next motion operations and for the specified axes. Since all motions are combined
movements where all axes start and stop at the same time, the speed value given here is some kind of
recommendation which may not be used at the next motion operation. Here following rules apply:

• a speed value given here is never exceeded
• when only one axis is moved by a motion operation E1803_motion_move_abs() or

E1803_motion_move_rel() at the same time, the speed value given here is used for this movement
• when more than one axis is moved by a motion operation E1803_motion_move_abs() or

E1803_motion_move_rel() at the same time, the controller calculates speeds for all axes which
ensure they all start and stop their movements at the same time

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()

110

flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or
E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,
E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3)

speed – motion speed (in unit mm/sec or degrees/sec)
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_move_abs(const unsigned char n,const unsigned int flags,const
double pos0,const double pos1,const double pos2,const double pos3)

Start a motion operation to the given absolute positions using at maximum the speeds specified with
E1803_motion_set_speed().

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or

E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,

E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3); the additional flag
E1803_COMMAND_FLAG_DONOTWAIT can be set to perform a movement parallel to other operations, for
details please refer to description of function E1803_motion_stream_wait() below
pos0 – absolute motion position for axis 0 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_0 is set
pos1 – absolute motion position for axis 1 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_1 is set
pos2 – absolute motion position for axis 2 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_2 is set
pos3 – absolute motion position for axis 3 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_3 is set
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_move_rel(const unsigned char n,const unsigned int flags,const
double pos0,const double pos1,const double pos2,const double pos3)

Start a motion operation which changes the current axis position by the value specified here and by
using at maximum the speeds specified with E1803_motion_set_speed().
Please note: in case of a direct operation it is mandatory to wait for the end of all previous motion operations
before this function is called. Elsewhere the real current axis position is not known and a relative movement is
not possible.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or

E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,

E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3); the additional flag
E1803_COMMAND_FLAG_DONOTWAIT can be set to perform a movement parallel to other operations, for
details please refer to description of function E1803_motion_stream_wait() below
pos0 – change the motion position for axis 0 (in unit mm or degrees) by the value given here; this value is used

only when flag E1803_COMMAND_FLAG_AXIS_0 is set
pos1 – change the motion position for axis 1 (in unit mm or degrees) by the value given here; this value is used

only when flag E1803_COMMAND_FLAG_AXIS_1 is set
pos2 – change the motion position for axis 2 (in unit mm or degrees) by the value given here; this value is used

only when flag E1803_COMMAND_FLAG_AXIS_2 is set
pos3 – change the motion position for axis 3 (in unit mm or degrees) by the value given here; this value is used

only when flag E1803_COMMAND_FLAG_AXIS_3 is set
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

111

int E1803_motion_move_abs_async(const unsigned char n,const unsigned int
flags,const double pos0,const double pos1,const double pos2,const double pos3)

Start an asynchronous motion operation to the given absolute positions using at maximum the speeds
specified with E1803_motion_set_speed(). Comparing to E1803_motion_move_abs(), this function:

• waits until a possibly running, previous motion operation at the same axes has completed
• starts this motion operation
• continues without waiting for the end of this motion, so other operations (except motions) can be

executed in parallel
This command requires firmware version 15 or newer.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (currently only E1803_COMMAND_FLAG_STREAM is
supported) and for which axes the given values have to be applied (E1803_COMMAND_FLAG_AXIS_0,
E1803_COMMAND_FLAG_AXIS_1, E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3); the
additional flag E1803_COMMAND_FLAG_DONOTWAIT can be set to perform a movement parallel to other
operations, for details please refer to description of function E1803_motion_stream_wait() below
pos0 – absolute motion position for axis 0 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_0 is set
pos1 – absolute motion position for axis 1 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_1 is set
pos2 – absolute motion position for axis 2 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_2 is set
pos3 – absolute motion position for axis 3 (in unit mm or degrees); this value is used only when flag

E1803_COMMAND_FLAG_AXIS_3 is set
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_stream_wait(const unsigned char n)
The two motion functions E1803_motion_move_abs() and E1803_motion_move_rel()

described above can be called with the command flag E1803_COMMAND_FLAG_STREAM set to ensure
sequential operation within the normal stream of commands. In this mode processing of further commands is
halted until the related motion operation has finished. Since the motion extension board uses an own micro-
controller, here also parallel operations are possible: when for these motion functions the flag
E1803_COMMAND_FLAG_DONOTWAIT is set together with E1803_COMMAND_FLAG_STREAM, operation does
not wait but continues to process other data in stream. In such a case motion is performed in parallel to these
operations done on the main laser controller.
This is true only for non-motion operations, before the next motion operation is called, the application has to
wait until the previous one has been finished. Within a stream this has to be done by calling function
E1803_motion_stream_wait(), it re-synchronises the stream with the parallel motion operation. So the
rule is: as long as a motion operation was started with the combined flags E1803_COMMAND_FLAG_STREAM|
E1803_COMMAND_FLAG_DONOTWAIT, a following call to E1803_motion_stream_wait() is mandatory
before any other motion-function is used.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_stop(const unsigned char n)
Stop a currently running motion operation immediately. Since axes always perform a combined

movement where all axes start and stop at the same time, the stop function always affects all axes which are
moving. When E1803_stop_execution() is called instead, not only axis movements but also all other operations
are stopped.

Parameters:

112

n – the 1-based board instance number as returned by E1803_set_connection()
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_get_pos(const unsigned char n,const unsigned char
axisNum,double *pos)

Retrieves the current position of an axis. This command is always a direct command retrieving the
current axis position. Thus it does not make use of command-flags.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
axisNum – the number of the axis (but not the axis-flags!) in range 0..3 where the current position has to be

retrieved for
pos – pointer to a variable where the current position (in unit mm) of the axis with the number specified in

axisNum has to be stored into; when the function does not return E1803_OK, this value is undefined
and can't be used

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_reference(const unsigned char n,const unsigned int flags,const
unsigned int mode,const double leaveDist,double speedStep0,double speedStep1)

Starts a referencing operation (=homing sequence) to have a defined position for the axis. The
referencing sequence consists of following steps:

• move to reference switch (connected to reference-input) with first referencing speed speedStep0
• leave the reference switch by the given distance leaveDist
• move to reference switch (connected to reference-input) with second referencing speed speedStep1
• set the position of the referenced axis to -1 – this value can be used to check if referencing was

successful or not, when E1803_motion_get_pos() returns a different value than -1 for the
referenced axis, something went wrong and referencing failed

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or

E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,
E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3)

mode – specifies how referencing has to be done exactly, here a bunch of OR-concatenated flags can be handed
over: one of the flags E1803_MOTION_REFSTEP_N (to search for the reference input in negative
direction) or E1803_MOTION_REFSTEP_P (to search for the reference input in positive direction)
which optionally can be combined with flag E1803_MOTION_REFSTEP_INV_SWITCH to have
inverted logic on the reference input

leaveDist – distance (in unit mm or degrees) to move off the reference switch after the switch was found for
the first time

speedStep0 – referencing speed (in unit mm/sec or degrees/sec) to find the reference switch for the first time
(this value can be larger than speedStep1 but should be small enough to not to overrun the switch)

speedStep1 – referencing speed (in unit mm/sec or degrees/sec) to find the reference switch for the second
time (this value should be smaller than speedStep0 and is responsible for the accuracy of the

referenced position)
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_motion_set_pos(const unsigned char n,const unsigned int flags,const
double pos)

This function does not cause any movement but resets the current axis position(s) to a new value. It can
be used e.g. after successful referencing to set the initial positions to some own values. All following movement
operations then are done in respect to the position values given here.

Parameters:

113

n – the 1-based board instance number as returned by E1803_set_connection()
flags – command flags specifying the type of function call (E1803_COMMAND_FLAG_STREAM or

E1803_COMMAND_FLAG_DIRECT) and for which axes the given values have to be applied
(E1803_COMMAND_FLAG_AXIS_0, E1803_COMMAND_FLAG_AXIS_1,
E1803_COMMAND_FLAG_AXIS_2, E1803_COMMAND_FLAG_AXIS_3)

pos – the new position value to be set for the specified axis/axes (in unit mm or degrees)
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

17.1.7 PID control loop functions

The E1803D provides three integrated PID control loops which can be used for different control tasks and run
fully parallel and autonomously to every marking function. Every of these three PID control loops makes use of
an input parameter of one of the analogue inputs AIn0, AIn1 and AIn2 which e.g. are provided by the Intelli-IO
Extension Board. These control loops can be initialised and used by the following functions:

int E1803_pid_init(const unsigned char n,const unsigned int flags,const unsigned
char ctrl,const double p,const double i,const double d,const double s,const
unsigned short setpoint)

Initialises and starts a control loop or halts and stops an already running control loop (dependent on
value of parameter flags). When a control loop is running, the current analogue input value from related input
AIn0 (used by PID0), AIn1 (used by PID1) or AIn2 (used by PID2) is read every 01 seconds, the related PID
control loop calculations are done and depending on the result the related output is changed.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
ctrl – a value in range 0..2 specifying the PID control loop 0..2 (which directly correspond to analogue inputs
AIn0..AIn2) where the new setpoint has to be specified for
flags – specifies the operational mode and output port to be used for the selected PID control loop. When
flags is set to 0, the related control loop (specified by parameter ctrl) is turned off completely. To enable a
control loop, following values can be set for this parameter:

• - one of the flags E1803_COMMAND_FLAG_PID_OUT_AOUT0,
E1803_COMMAND_FLAG_PID_OUT_AOUT1, E1803_COMMAND_FLAG_PID_OUT_DOUT0,
E1803_COMMAND_FLAG_PID_OUT_DOUT1, E1803_COMMAND_FLAG_PID_OUT_DOUT2,
E1803_COMMAND_FLAG_PID_OUT_DOUT3, E1803_COMMAND_FLAG_PID_OUT_DOUT4,
E1803_COMMAND_FLAG_PID_OUT_DOUT5, E1803_COMMAND_FLAG_PID_OUT_DOUT6,
E1803_COMMAND_FLAG_PID_OUT_DOUT7 which specify which of the analogue outputs AOut0 or
AOut1 or which of the digital outputs DOut0..DOut7 has to be used as the PID control output (please
note: digital outputs should be used only with simple, slow environments, elsewhere analogue outputs
are to be preferred)

• optionally combined (=OR-concatenated) with E1803_COMMAND_FLAG_PID_OUT_INVERT when the
behaviour of the related output has to be inverted

• in case of E1803_COMMAND_FLAG_PID_OUT_AOUT0 or E1803_COMMAND_FLAG_PID_OUT_AOUT1
optionally combined (=OR-concatenated) with E1803_COMMAND_FLAG_PID_OUT_POSITIVE, when
this flag is not set, the neutral middle point of the control output is at 5V, when the input value is
smaller than the setpoint, the output voltage is regulated below of 5V, when the input value is bigger
than the setpoint, the output voltage is regulated above these 5V; comparing to this the middle point of
the control output is at 0V when flag E1803_COMMAND_FLAG_PID_OUT_POSITIVE is set and the
output voltage is regulated to values >0V only when measured input value is bigger than the setpoint

ctrl – a value in range 0..2 specifying the PID control loop 0..2 (which directly correspond to analogue inputs
AIn0..AIn2) where the new setpoint has to be specified for
p – proportional part of the PID control loop, has to be adjusted according to the specific characteristics of the
environment to be controlled
i – integral part of the PID control loop, has to be adjusted according to the specific characteristics of the
environment to be controlled

114

d – differential part of the PID control loop, has to be adjusted according to the specific characteristics of the
environment to be controlled
s – scale value for the PID control loop, this parameter normally can be set to 1.0 and is required only for a few
very specific cases
setpoint – the target value in range 0..65535
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_pid_set(const unsigned char n,const unsigned char ctrl,const unsigned
short setpoint)

Specify a new or modified setpoint to let the PID control loop work with. The setpoint is the target
value which has to be reached and kept. After initialisation this function can be used several times in order to
specify a new setpoint.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
ctrl – a value in range 0..2 specifying the PID control loop 0..2 (which directly correspond to analogue inputs
AIn0..AIn2) where the new setpoint has to be specified for
setpoint – the new target value in range 0..65535
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_pid_halt_range(const unsigned char n,const unsigned char ctrl,const
unsigned short lowlimit,const unsigned short highlimit)

This function can be used to halt the current marking operation when the measured input values are
out of a valid range. In this case marking is stopped the next time the laser is turned of and it is automatically
continued as soon as the measured input values are back within the range specified with this function.
Marking is halted when the input value is smaller than lowlimit or bigger than highlimit. When
lowlimit is set to 0 and highlimit is set to 65535, this function is disabled and the PID control loop does
not influence the marking operation.

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
ctrl – a value in range 0..2 specifying the PID control loop 0..2 (which directly correspond to analogue inputs
AIn0..AIn2) where the new setpoint has to be specified for
lowlimit – lower limit to halt the marking operation when input value is below of it
highlimit – upper limit to halt the marking operation when input value is above of it
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

17.1.8 Miscellaneous functions

int E1803_write(unsigned char n,unsigned int flags,unsigned int value)
Writes some specific data to outputs at E1803D controller. Here flags decides which output to use

and value specifies what has to be written to this output. Additionally flags decides weather this is a stream-
command (means it is executed at a point in stream that is relative to the other stream commands) or a direct
command (means it is executed immediately on calling).

Parameters:
n – the 1-based board instance number as returned by E1803_set_connection()
flags – handling flags specifying the behaviour of this command, when E1803_COMMAND_FLAG_STREAM is
set, it is used as stream command, E1803_COMMAND_FLAG_DIRECT specifies to execute it immediately and
independent on current stream and execution state. Here exactly one of these flags can be used, it is not
allowed to OR-concatenate them. Additionally exactly one of the following flags has to be set to specify which
output need to be used to send the value to, this flag has to be OR-concatenated with one of the previously
described ones:
E1803_COMMAND_FLAG_WRITE_LP8MO – set or unset MO-output of laser connector to a value of 1 or 0

115

E1803_COMMAND_FLAG_WRITE_LP8LATCH – set or unset latch-output of laser connector to a value of 1 or 0
E1803_COMMAND_FLAG_WRITE_LASERGATE – set or unset LaserGate-output to a value of 1 or 0, this
functions should be used with jump or mark operations only since every switch from jump to mark (or vice
versa) still sets the LaserGate output automatically and therefore would overwrite own values set with this
function
value – the value to be sent to the output specified by flags
Return: E1803_OK or an E1803_ERROR_-return code in case of an error

17.1.9 Writing of stand-alone data

Using E1803D Easy Programming Interface it is also possible to write stand-alone data which are not marked
immediately but are stored either locally or on scanner controller's micro-SD-card. In this mode sending of
vector data, scanner- and laser parameters looks exactly the same as for direct operation mode where data are
marked immediately. The difference can be found in initialisation (which tells the software to not to mark these
data but to store them for later use) and when dynamic data are created.

E1803D supports two types of writing of stand-alone data:
• sending them to the controller via Ethernet or USB connection where they are written to micro-SD-

card and
• writing one or more files to the local file system which later have to be copied to the micro-SD-card of

the controller manually.

The general procedure for sending stand-alone data to the controller's micro-SD-card has to look as follows:
1. The controller needs to be in idle-state, means it should not mark and should not have loaded an

already existing .EPR file. This can be ensured by calling stand-alone command clepr with a filename
for a file that does not exists on micro-SD-card. For more details please refer to “15.2 Stand-Alone
Control Commands“

2. Configure the connection to E1803D controller by calling E1803_set_connection(), the returned
board instance number has to be used for all following function calls.

3. Enable stand-alone write mode and specify the filename of the .EPR file to be created on micro-SD-card
by calling E1803_set_filepath() with mode E1803_FILEMODE_SEND.

4. Send all laser- and scanner-parameters as well as vector data as usual.
5. Optionally: send information about dynamic contents of the .EPR file to be created by calling

E1803_dynamic_data2() optionally followed by some vector data followed by an other call to
function E1803_dynamic_data2() which ends this section of dynamic data (please refer function
description below for details).

6. Wait until E1803_get_card_state2() returns “busy”
7. Wait until E1803_get_card_state2() returns “idle” or an error
8. End data transmission and finish created file by calling E1803_close().

The general procedure for writing stand-alone data to the local filesystem has to look as follows:
1. Since writing of local data does not require a working connection to the controller card, it does not

need to be configured and the special board instance number 0 has to be used for all following function
calls.

2. Enable stand-alone write mode and specify the filename of the .EPR file to be created by calling
E1803_set_filepath() with mode E1803_FILEMODE_LOCAL.

3. Send all laser- and scanner-parameters as well as vector data as usual.
4. Optionally: send information about dynamic contents of the .EPR file to be created by calling

E1803_dynamic_data2() optionally followed by some vector data followed by an other call to
function E1803_dynamic_data2() which ends this section of dynamic data (please refer function
description below for details).

5. End data transmission and finish created file by calling E1803_close().

The functions which are specific to writing of stand-alone data have to be used as follows:

int E1803_set_filepath(unsigned char n,const char *fname,unsigned int mode)

116

This function enables operation mode where all following data are not marked immediately but written
into an .EPR stand-alone file. This mode stays active until next call of E1803_close(). It has to be called prior
to E1803_load_correction(). Valid parameters and their meaning depends on the usage scenario:

• when sending stand-alone data to a connected controller which writes the .EPR file to the micro-SD-
card directly:
n – the 1-based board instance number as returned by E1803_set_connection()
fname – name of the file as it has to appear on micro-SD-card of the controller in style
“0:/filename.epr” where “0:/” is a fixed prefix specifying the micro-SD-card, “filename” is a free to
choose name with recommended 8 characters at max and “.epr” is a fixed, mandatory file extension
specifying an E1803 stand-alone file
mode – set to E1803_FILEMODE_SEND to specify the data have to be sent to the controller

• when writing stand-alone data to the local filesystem (no controller card directly involved):
n – board instance number, has to be set to 0 (as well as for all other function calls in this mode)
fname – name of the file to be written, this has to be a valid path to a location on a local filesystem
which is writeable and needs to have file extension “.epr”
mode – set to E1803_FILEMODE_LOCAL to specify the data have to be written locally

Return: E1803_OK or an E1803_ERROR_-return code in case of an error

int E1803_dynamic_data2(unsigned char n,struct oapc_bin_struct_dyn_data2
*dynData)

This function can be used to write dynamic data such as texts, serial numbers, barcodes which later can
be changed during operation in stand-alone mode.
This function always has to be called in fixed sequences:

1. jump to the start position of the dynamic element by calling E1803_jump_abs()
2. first call of E1803_dynamic_data2(n,dynData) with a valid dynData parameter describing the

dynamic content and its capabilities
3. optionally and dependent on type of dynamic data that have to be created: some vector data which

belong to the dynamic content and are required to build it up
4. second call of E1803_dynamic_data2(n,NULL) with NULL handed over for parameter dynData to

finish this element
A stand-alone file can contain up to ten dynamic data elements. So this function can be called up to ten times to
create a new element on each call.

When this function is called, beside the .EPR-file an additional .DAT file is created which contains some specific
data. During operation in stand-alone mode an other file with the same name and with extension .SER may be
created which contains counting information of an included serial number. All these files belong together and
deleting one or more of them may lead to unexpected results. When writing the data to local filesystem it also
has to be ensured both, the .EPR and the .DAT file are copied to the controller later.

The structure oapc_bin_struct_dyn_data2 is defined in file “oapc_libio.h” which is part of the OpenSDK.
The general usage is described in OpenSDK manual, both are available for download at
https://halaser.systems/download.php.

For E1803 scanner controller card following specific parameters and features of this structure can to be used:

Independent from what kind of dynamic element has to be created, following members of structure
oapc_bin_struct_dyn_data2 always have to be filled with data:

UID – and unique identifier which can be created out of a plain, human readable text which should be unique
too and later can be used to access this specific element via stand-alone control commands; this
identifier has to created out of the 8 bit ASCII character using following CRC-function:
#define POLY 0x82f63b78

/* CRC-32 (Ethernet, ZIP, etc.) polynomial in reversed bit order. */
unsigned int crc32b(const char *buf)
{
 int k;

117

https://halaser.systems/download.php

 unsigned int crc=0xFFFFFFFF;
 size_t len=strlen(buf);

 while (len--)
 {
 crc^=*buf++;
 for (k=0; k<8; k++)
 crc=crc&1 ? (crc>>1)^POLY : crc>>1;
 }
 return ~crc;
}

uScaleX – scaling factor in X-direction in unit 1/1000000
uScaleY – scaling factor in Y-direction in unit 1/1000000
res1a, res1b, res2, res3, res4, res5, res6, res7 – these members are reserved for later use and all have

to be set to 0

Every dynamic element can be a serial number. In such a case the serial number part of structure
oapc_bin_struct_dyn_data2 has to be filled with data:

fmtString – an ASCII text with a maximum length of DYN_DATA_MAX_STRING_LENGTH describing the
format of the serial number/date/time in the dynamic element, here the same notation has to be used
as it is known from the serial number input element of BeamConstruct (please refer to the related
manual)

snBeatCount – specifies how much numbers of mark operations have to elapse before the serial number has
to be incremented, here a value of 1 has to be given to increment on every operation

snBeatOffset – specifies a counting offset for the beat count parameter
snIncrement – specifies the step width by which a serial number has to be incremented
snNumericBase – the numeric base of the serial numbers to be displayed, default is 10 for decimal numbers
snResetAtTime – the time value at which the serial number has to be reset to it's initial value; set to a
timestamp (in unit day of week/date/seconds) when it has to be reset at a given time
snResetAtValue – the numeric value at which the serial number has to be reset to it's initial value
snFlags – a set of OR-concatenated flags which further specifies handling of the serial number:

0x0002 – reset the serial number at a specific counting value specified by snResetAtValue
0x0004 – reset the serial number at a specific day of the week specified by snResetAtTime
0x0008 – reset the serial number at a specific date specified by snResetAtTime
0x0010 – reset the serial number at a specific time of the day specified by snResetAtTime

snStartValue – the initial- and reset-to-value of the serial number
snMinDigits – the minimum number of digits the serial number has to consist of
timeOffset – a static offset (in unit seconds) to be added to the time-part of the current element

Dynamic text elements additionally need to fill following parts of the same structure
oapc_bin_struct_dyn_data2:

fmtString – an ASCII text with a maximum length of DYN_DATA_MAX_STRING_LENGTH which contains the
text to be shown and which can be changed by appropriate stand-alone commands later; when used in
combination with serial number data, here a format-string has to be given as described above

type – a number which specifies the font to be used for creating the dynamic texts, here one of following
values can be used:
0x01000000 – use “Rect Single” laser font
0x02000000 – use “Rect Double” laser font
0x03000000 – use “Roman Simple” laser font
0x04000000 – use “Roman Double” laser font
0x05000000 – use “Script Simple” laser font
0x06000000 – use “Script Double” laser font
0x07000000 – use “Script Complex” laser font

118

0x08000000 – use “Times Simple” laser font
0x09000000 – use “Times Bold” laser font
0x0A000000 – use “Times Italic” laser font
0x0B000000 – use “Times Italic Bold” laser font

flags – some OR-concatenated flags which specify orientation, alignment and style of the text to be
generated, here no two flags of same type are allowed to be combined which would conflict with each
other:
0x00000000 – orient text left to right
0x00010000 – orient text right to left
0x00020000 – orient text top to bottom
0x00030000 – orient text bottom to top

0x00000000 – horizontally align to the left
0x00000100 – centre-align horizontally
0x00000200 – horizontally align to the right

0x00000001 – style fixed char-size – all characters are forced to have same distance
param1 – kerning value in unit 1/1000%
param2 – reserved for future use, set to 0
param3 – spacing in unit 1/1000%

Dynamic DataMatrix barcode elements require vector data to be sent between two calls of function
E1803_dynamic_data2(), these vector data describe the pattern which has to be marked to create one
single element (means square) of the DataMatrix barcode. Such an element needs to incorporate all that is
needed including laser- and scannerdata as well as vector data for outline and possible hatches. During stand-
alone operation the barcode itself is created by combining these single elements at these positions, where a bit
(=square) has to be set).
Additionally following data of the structure oapc_bin_struct_dyn_data2 need to be filled for this type of
element:

fmtString – an ASCII text with a maximum length of DYN_DATA_MAX_STRING_LENGTH which contains the
text to be encoded as DataMatrix barcode and which can be changed by appropriate stand-alone
commands later; when used in combination with serial number data, here a format-string has to be
given as described above

type – set to 71 for DataMatrix barcode
flags – some OR-concatenated flags which further specify how the barcode has to be created, currently only

one flag is supported:
0x0001 – create a square-shaped DataMatrix barcode instead of a rectangular one

param1 – set to 0
param2 – set to -1
param3 – specifies the size to be generated (in range 2..30) and implicitly the error correction level
quietZone – zone the barcode has to be surrounded with, the value given here is the multiple of the width of a

single token multiplied with 1000

17.1.9.1 Example

Following a (simplified) example in some pseudo-code is given which demonstrates the correct usage of the
programming interface to write stand-alone data. The laser- and scanner-parameters are dropped in this
example since they are not specific to this operation mode and always have to be set.

Example: A serial number in format “000/hh/mm” where “000” is a continuously increased number, “hh” is the
current hour and “mm” is the current minute has to be encoded into a DataMatrix barcode which has a size of
25x25 mm and is positioned at -30x30 mm within a 100x100 mm working area that itself is aligned to
coordinates -50,50

1. not shown here: initialisation of libE1803 (with evaluation of parameter boardIdx), sending of default
scanner and laser data as usual

119

2. E1803_jump_abs(boardIdx, -20132659, 20132659, 0) // jump to the starting position of
the DataMatrix barcode to be created

3. E1803_dynamic_data2(boardIdx, dynData) // initiate the dynamic data sequence, here the
members of dynData are set to following values:
UID = 2340633892 – CRC-value of element name “Barcode 1”
fmtString = "$S/%I/%M" – display serial number, hour and minute
type = 71 – DataMatrix barcode
flags = 1 – barcode forced to square
param2 = 4294967295
param3 = 2
uScaleX = 1029654
uScaleY = 1029654
snIncrement = 1
snNumericBase = 10
snMinDigits = 3
all other values are set to 0

4. E1803_jump_abs(boardIdx, 0, 0, 0)
E1803_mark_abs(boardIdx, 1197222, 0, 0)
E1803_mark_abs(boardIdx, 1197222, -1197222, 0)
E1803_mark_abs(boardIdx, 0, -1197222, 0)
E1803_mark_abs(boardIdx, 0, 0, 0) // draw a single rectangle which describes one
DataMatrix cell (in this example only the outline without any hatching is done, hatches would have to
be added here too

5. E1803_dynamic_data2(boardIdx, NULL) // end the sequence of dynamic data
6. E1803_execute(boardIdx)
7. Not shown here: waiting for card being busy, waiting for card being idle (which means writing of the Epr

file to the microSD card has been finished), closing the connection to the controller

17.1.10 Error Codes

Most of the functions described above can return an error code in case an operation could not be completed
successfully for any reason. So when it does not return with E1803_OK the error code informs about the
reason for failure:

• E1803_ERROR_INVALID_CARD – a wrong or illegal card number was specified with function
parameter n

• E1803_ERROR_NO_CONNECTION – a connection to card could not be established
• E1803_ERROR_NO_MEMORY – there is not enough memory available on the host
• E1803_ERROR_UNKNOWN_FW – card is running an unknown and/or incompatible firmware version
• E1803_ERROR_TRANSMISSION – data transmission to card failed
• E1803_ERROR_FILEOPEN – opening of a file failed
• E1803_ERROR_FILEWRITE – writing of data into a file failed
• E1803_ERROR_INVALID_DATA – data or parameters handed over to a function are invalid, out of

range or illegal in current context
• E1803_ERROR_UNKNOWN_BOARD – trying to access a controller board that is not a motion controller
• E1803_ERROR_FILENAME – a file name handed over to a function was illegal, it is either too long, has

an illegal or too long file extension, comes with too much sub-directories or contains illegal characters
• E1803_ERROR_NOT_SUPPORTED – the requested feature or function is not supported by the current

firmware version
• E1803_ERROR – an other, unspecified error occurred

17.2 RTC4 Compatibility Functions
Beside the easy programming interface described above, a bunch of additional functions is provided that are
compatible to the ones known from RTC4 scanner controller card. So to use E1803D scanner card with existing
code that supports the RTC4 scanner controller, following few steps have to be done:

120

• insert a call to E1803_set_connection() into existing code as very first in order to specify the
communication connection for E1803D card (this is the only exception where an E1803D Easy
Interface Function should be used together with an RTC4 Compatibility Function)

• recompile the existing RTC4-application so that it uses e1803inter.DLL/libe1803inter.so instead of
RTC4DLL.dll/libslrtc4.so

In case E1803D card has to be operated with default connection settings, no recompilation is necessary, here
e1803inter.dll/libe1803inter.so just has to be renamed to RTC4DLL.dll/libslrtc4.so.

Since most relevant RTC4 functions are already provided, majority of existing applications should work now
without any further modifications. Due to the completely different concept of E1803D scanner controller,
there are some differences to the original RTC4 programming interface which should be checked in case of
some errors:

• all RTC4 functions that exist as list- and non-list-commands are treated like a list command
• list switch commands are ignored since E1803D does not make use of separated lists internally
• output of already sent marking data is started on calls to n_execute_list(), execute_list(),

n_set_end_of_list() or set_end_of_list()
• some functions are not implemented or always return a default value (please refer below for a list of

not implemented RTC4 functions)

Following functions are specific to RTC4 hardware or do not make sense when E1803D scanner card is used
and therefore aren't supported:

n_load_z_table()
load_z_table()
n_set_defocus_list()
set_defocus_list()
n_set_offset_list()
set_offset_list()
n_laser_on_list()
laser_on_list()
n_set_list_jump()
set_list_jump()
n_set_input_pointer()
set_input_pointer()
n_list_call()
list_call()
n_list_return()
list_return()
n_z_out_list()
z_out_list()
n_timed_jump_abs()
timed_jump_abs()
n_timed_mark_abs()
timed_mark_abs()
n_timed_jump_rel()
timed_jump_rel()
n_timed_mark_rel()
timed_mark_rel()
n_set_fly_rot()
set_fly_rot()
n_fly_return()
fly_return()
n_calculate_fly()
calculate_fly()
n_select_cor_table_list()
select_cor_table_list()
n_set_wait()
set_wait()
n_simulate_ext_start()
simulate_ext_start()
n_set_pixel_line()
set_pixel_line()

121

n_set_pixel()
set_pixel()
n_set_extstartpos_list()
set_extstartpos_list()
n_laser_signal_on_list()
laser_signal_on_list()
n_laser_signal_off_list()
laser_signal_off_list()
n_set_io_cond_list()
set_io_cond_list()
n_clear_io_cond_list()
clear_io_cond_list()
n_list_jump_cond()
list_jump_cond()
n_list_call_cond()
list_call_cond()
n_save_and_restart_timer()
save_and_restart_timer()
n_set_ext_start_delay_list()
set_ext_start_delay_list()
n_set_trigger()
set_trigger()
n_arc_rel()
arc_rel()
n_arc_abs()
arc_abs()
drilling()
regulation()
flyline()
n_get_input_pointer()
get_input_pointer()
n_get_marking_info()
get_marking_info()
n_auto_change_pos()
auto_change_pos()
aut_change()
n_start_loop()
start_loop()
n_quit_loop()
quit_loop()
n_write_da_2()
write_da_2()
n_set_max_counts()
set_max_counts()
n_set_offset()
set_offset()
n_disable_laser()
disable_laser()
n_enable_laser()
enable_laser()
n_stop_list()
stop_list()
n_restart_list()
restart_list()
n_get_xyz_pos()
get_xyz_pos()
n_get_xy_pos()
get_xy_pos()
n_select_list()
select_list()
n_z_out()
z_out()
n_laser_signal_on()

122

laser_signal_on()
n_laser_signal_off()
laser_signal_off()
n_set_delay_mode()
set_delay_mode()
n_set_piso_control()
set_piso_control()
n_select_status()
select_status()
n_get_encoder()
get_encoder()
n_select_cor_table()
select_cor_table()
n_execute_at_pointer()
execute_at_pointer()
n_get_head_status()
get_head_status()
n_simulate_encoder()
simulate_encoder()
n_set_hi()
set_hi()
n_release_wait()
release_wait()
n_get_wait_status()
get_wait_status()
n_set_ext_start_delay()
set_ext_start_delay()
n_home_position()
home_position()
n_set_rot_center()
set_rot_center()
n_read_ad_x()
read_ad_x()
n_read_pixel_ad()
read_pixel_ad()
n_get_z_distance()
get_z_distance()
n_get_time()
get_time()
n_set_defocus()
set_defocus()
n_set_softstart_mode()
set_softstart_mode()
n_set_softstart_level()
set_softstart_level()
n_control_command()
control_command()
load_cor()
load_pro()
n_get_serial_number()
get_serial_number()
n_get_serial_number_32()
get_serial_number_32()
get_hi_data()
n_auto_cal()
auto_cal()
n_get_list_space()
get_list_space()
teachin()
n_get_value()
get_value()
set_duty_cycle_table()
n_move_to()

123

move_to()
getmemory()
n_get_waveform()
get_waveform()
n_measurement_status()
measurement_status()
n_load_varpolydelay()
load_varpolydelay()
n_write_da_2_list()
write_da_2_list()

17.3 USC1/2 Compatibility Functions (SCI interface)
Beside the easy programming interface described above a bunch of additional functions is provided that are
compatible to the ones known from SCI programming interface used for USC1/2 scanner controller card. So to
use E1803D scanner card with existing code that supports the USC1 or USC2 scanner controller, following
steps have to be done:

• insert a call to E1803_set_connection() into existing code as very first in order to specify the
communication connection for E1803D card (this is the only exception where an E1803D Easy
Interface Function should be used together with an USC1/2 Compatibility Function)

• recompile the existing SCI-application so that it uses e1803inter.DLL instead of sc_optic.dll
In case E1803D card has to be operated with default connection settings, no recompilation is necessary, here
e1803inter.dll just has to be renamed to sc_optic.dll.

Since most relevant SCI functions are already provided, majority of existing applications should work now
without any further modifications. Due to the different concept of E1803D scanner controller, there are some
differences to the original SCI programming interface which should be checked in case of troubles:

• all USC1/2 functions/types that exist as stream- and non-stream-variants are treated like a stream
command

• output of already sent marking data is started on call to ScSCIFlush() latest
• some functions are not implemented or always return a default value (please refer below of a list of not

implemented SCI functions)

Following functions are specific to USC1/2 hardware or do not make sense in relation to E1803D scanner card
and therefore aren't supported:

long ScSCISetContinuousMode()
long ScSCIGetContinuousMode()
long ScSCIDevicePixelLine()
long ScSCIRasterPixelLine()
long ScSCIRasterStart()
long ScSCIRasterEnd()
long ScSCIGetDeviceName()
long ScSCIGetDeviceCaps()
long ScSCIGetDeviceData()
long ScSCISetDeviceData()
long ScSCIGetExternalTrigger()
long ScSCISetExternalTriggerCount()
long ScSCIGetExternalTriggerCount()
long ScSCISetEnableHead()
long ScSCIGetEnableHead()
long ScSCISetZField()
long ScSCIGetZField()
long ScSCIGetZGain()
long ScSCISetZGain()
long ScSCIGetHomePosition()
long ScSCIGetZHomePosition()
long ScSCISetHomePosition()
long ScSCISetZHomePosition()
long ScSCIGetZOffset()
long ScSCISetZOffset()

124

long ScSCISetZWorkingArea()
long ScSCIGetZWorkingArea()
long ScSCIGetHomeJump()
long ScSCISetHomeJump()
long ScSCIMaxExternalTriggerCount()
long ScSCIResetExternalTriggerCount()
long ScSCISetDeviceEnableFlags()
long ScSCIGetDeviceEnableFlags()
long ScSCIGetDevicePath()
long ScSCISetDeviceMiscValueD()
long ScSCIGetDeviceMiscValueD()
long ScSCISetHeadCount()
long ScSCIStreamInfo()
long ScSCIGetSpeed()
long ScSCISetSpeed()
long ScSCIGetStyleSet()
long ScSCISetStyleSet()
long ScSCISetLoopMode()
long ScSCIGetLoopMode()
long ScSCISetLoop()
long ScSCIGetLoop()
long ScSCISetMessageWindow()
long ScSCISetAxisState()
long ScSCIGetAxisState()
long ScSCISaveSettings()
long ScSCILoadSettings()
long ScSCIEditSettings()
long ScSCIUpdateDeviceStyle()
long ScSCIGetInterfaceVersion()
long ScSCIGetDebugMode()
long ScSCISetDebugMode()
long ScSCIGetIdentString()
long ScSCIGetDeviceMapLaserPort()
long ScSCISetDeviceMapLaserPort()
long ScSCIGetUSCInfoLong()

125

APPENDIX A – Wiring between E1803D and IPG YLP Series
Type B, B1 and B2 fiber laser
PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name E1803D Connector E1803D Connector / Pin IPG Pin
LP0

Laser signal connector

Pin 1 Pin 1
LP1 Pin 3 Pin 2
LP2 Pin 5 Pin 3
LP3 Pin 7 Pin 4
LP4 Pin 9 Pin 5
LP5 Pin 11 Pin 6
LP6 Pin 13 Pin 7
LP7 Pin 15 Pin 8
MO / Main Oscillator Pin 8 Pin 18
LP8 Latch Pin 17 Pin 9
LaserA / Frequency Pin 22 Pin 20
Laser Gate / Modulation 26 pin connector, pin 26 Pin 19

Alarm, one of DIn0…DIn7
Digital interface connector

Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 16
Alarm, one of DIn0…DIn7 Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 21
Pilot Laser, one of DOut0…DOut7 Pin 3, 5, 7, 9, 11, 13, 15 or 17 Pin 22 *)

*) may require additional power driver since some laser variants consume a current at this input which is higher
than the maximum output allowed

In this wiring-scheme no GND-connections are listed, they have to be added in order to get valid and working
connections.

126

APPENDIX B – Wiring between E1803D and JPT YDFLP
series fiber laser (“MOPA”) or IPG YLP Series Type D fiber
laser or Raycus RFL PMX/PQB Series fiber laser
PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name E1803D Connector E1803D Connector / Pin JPT
D-SUB25

LP0

Laser signal connector

Pin 1 Pin 1
LP1 / serial data Pin 3 Pin 2
LP2 / serial clock Pin 5 Pin 3
LP3 Pin 7 Pin 4
LP4 Pin 9 Pin 5
LP5 Pin 11 Pin 6
LP6 Pin 13 Pin 7
LP7 Pin 15 Pin 8
MO / Main Oscillator Pin 8 Pin 18
LP8 Latch Pin 17 Pin 9
LaserA / Frequency Pin 22 Pin 20
Laser Gate / Modulation 26 pin connector, pin 26 Pin 19
LaserB / serial enable Pin 19 Pin 22 *)
GND Pin 2 or 23 Pin 10-15

Alarm, one of DIn0…DIn7 Digital interface
connector

Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 16
Alarm, one of DIn0…DIn7 Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 21
Pilot Laser: in software choose
LaserB as output

*) for details regarding double-usage of this pin, please refer to the manual of the laser

127

APPENDIX C – Wiring between E1803D and IPG YLP Series
Type E fiber laser

PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Variant using E1803D with support for APD index setting via DB-25 serial data interface

Signal Name E1803D Connector Connector / Pin IPG Pin
LP0

Laser signal connector

Pin 1 Pin 1
LP1 Pin 3 Pin 2
LP2 Pin 5 Pin 3
LP3 Pin 7 Pin 4
LP4 Pin 9 Pin 5
LP5 Pin 11 Pin 6
LP6 Pin 13 Pin 7
LP7 Pin 15 Pin 8
MO / Main
Oscillator

Pin 8 Pin 18

LP8 Latch Pin 17 Pin 9
LaserA / Frequency Pin 22 Pin 20
Laser Gate /
Modulation

26 pin connector, pin 26 Pin 19

Alarm,
one of DIn0..DIn7

Digital interface connector

Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 16

Alarm,
one of DIn0..DIn7

Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 21

Pilot Laser,
one of DOut0,
DOut1,
DOut5..DOut7

Pin 3, 5, 13, 15 or 17 Pin 22 1)

Serial Enable Pin 7 Pin 24 2)
Serial Clock Pin 9 Pin 13 2)
Serial Data Pin 11 Pin 10 2)

1) may require additional power driver since some laser variants consume a current at this input which is higher
than the maximum output allowed
2) serial data transmission requires firmware version 2 or newer

In this wiring-scheme no GND-connections are listed, they have to be added in order to get valid and working
connections.

128

APPENDIX D – Wiring between E1803D and IPG YLP Series
Type G fiber laser
PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name E1803D Connector E1803D Connector / Pin D-SUB25
LP0

Laser signal connector

Pin 1 Pin 1
LP1 Pin 3 Pin 2
LP2 Pin 5 Pin 3
LP3 Pin 7 Pin 4
LP4 Pin 9 Pin 5
LP5 Pin 11 Pin 6
LP6 Pin 13 Pin 7
LP7 Pin 15 Pin 8
MO / Main Oscillator Pin 8 Pin 18
LP8 Latch Pin 17 Pin 9
LaserA / Frequency Pin 22 Pin 20
Laser Gate / Modulation 26 pin connector, pin 26 Pin 19
LaserB Pin 19 Pin 22
GND Pin 2 or 23 Pin 14

Alarm, one of DIn0…DIn7
Digital interface
connector

Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 11
Alarm, one of DIn0…DIn7 Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 16
Alarm, one of DIn0…DIn7 Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 21
Pilot Laser: in software choose
LaserB as output

129

APPENDIX E – Wiring between E1803D and IPG YLR Series
laser

PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name Board Connector / Pin IPG Pin
AOut0 or AOut1

Laser signal connector

Pin 12 or pin 14 Pin 12
MO / Main
Oscillator

Pin 8 Pin 18

Laser Gate /
Modulation

Pin 26 Pin 15

Pilot Laser,
one of
DOut0..DOut7

Digital interface connector Pin 3, 5, 7, 9, 11, 13, 15 or 17 Pin 17

In this wiring-scheme no GND-connections are listed, they have to be added in order to get valid and working
connections.

130

APPENDIX F – Wiring between E1803D and IPG YLM Series
laser

PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name Board Connector / Pin IPG Pin
AOut0 or AOut2

Laser signal connector

Pin 12 or pin 14 Pin 8 1)
MO / Main
Oscillator

Pin 8 Pin 7

Laser Gate /
Modulation

Pin 26 Pin 17

Pilot Laser,
one of
DOut0..DOut7 Digital interface connector

Pin 3, 5, 7, 9, 11, 13, 15 or 17 Pin 21

Laser ready,
one of DIn0..DIn7

Pin 4, 6, 8,10, 12, 14, 16 or 18 Pin 19

RS232 serial
interface

Serial interface connector Pins 1, 2 and 3
RS232
interface

1) The E1803D analogue output provides signals in range 0..10 V while the IPG YLM laser input expects signals
in range 0..4 V. To avoid hardware damage the signal level has to be limited by additional hardware measures,
e.g. by a voltage divider

In this wiring-scheme no GND-connections are listed, they have to be added in order to get valid and working
connections.

131

APPENDIX G – Wiring between E1803D and MaxPhotonics
MFP fiber laser
PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name E1803D Connector E1803D Connector / Pin MaxPhot
onics
D-SUB25

LP0

Laser signal connector

Pin 1 Pin 1
LP1 Pin 3 Pin 2
LP2 Pin 5 Pin 3
LP3 Pin 7 Pin 4
LP4 Pin 9 Pin 5
LP5 Pin 11 Pin 6
LP6 Pin 13 Pin 7
LP7 Pin 15 Pin 8
LP8 Latch Pin 17 Pin 9
MO / Main Oscillator Pin 8 Pin 18
LaserA / Frequency Pin 22 Pin 20
Laser Gate / Modulation 26 pin connector, pin 26 Pin 19
GND Pin 2 or 23 Pin 10-15

Alarm, one of DIn0…DIn7
Digital interface
connector

Pin 4, 6, 8, 10, 12, 14, 16 or
18

Pin 16

Alarm, one of DIn0…DIn7
Pin 4, 6, 8, 10, 12, 14, 16 or
18

Pin 21

Pilot Laser, one of DOut0…DOut7 Pin 3, 5, 7, 9, 11, 13, 15 or 17 Pin 22

132

APPENDIX H – Wiring between E1803D and SPI G4 Pulsed
Fibre Laser / TRUMPF TruPulse nano series
PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name E1803D Connector E1803D Connector / Pin SPI Pin
LP0

Laser signal connector

Pin 1 Pin 17
LP1 Pin 3 Pin 18
LP2 Pin 5 Pin 19
LP3 Pin 7 Pin 20
LP4 Pin 9 Pin 51
LP5 Pin 11 Pin 52
LP6 Pin 13 Pin 53
LP7 Pin 15 Pin 54
MO / Laser Enable Pin 8 Pin 7
LP8 Latch Pin 17 Pin 23
LaserA / Pulse Trigger Pin 22 Pin 13
AOut0 / Power Pin 12 Pin 65
AOut1 / Simmer Pin 14 Pin 64
LaserGate / Modulation Pin 26 Pin 5

Alarm, one of DIn0…DIn7
Digital interface connector

Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 9
Pilot Laser, one of DOut0…DOut7 Pin 3, 5, 7, 9, 11, 13, 15 or 17 Pin 6

In these wiring-schemes no GND-connections are listed, they have to be added in order to get valid and
working connections.

133

APPENDIX I – Wiring between E1803D and Raycus fiber laser
PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name E1803D Connector E1803D Connector / Pin Raycus Pin
LP0

Laser signal connector

Pin 1 Pin 1
LP1 Pin 3 Pin 2
LP2 Pin 5 Pin 3
LP3 Pin 7 Pin 4
LP4 Pin 9 Pin 5
LP5 Pin 11 Pin 6
LP6 Pin 13 Pin 7
LP7 Pin 15 Pin 8
MO / Main Oscillator Pin 8 Pin 18
LaserA / Frequency Pin 22 Pin 20
Laser Gate / Modulation 26 pin connector, pin 26 Pin 19

Alarm, one of DIn0…DIn7
Digital interface connector

Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 16
Alarm, one of DIn0…DIn7 Pin 4, 6, 8, 10, 12, 14, 16 or 18 Pin 21

In this wiring-scheme no GND-connections are listed, they have to be added in order to get valid and working
connections.

134

APPENDIX J – Wiring between E1803D and Raycus C500
Series laser

PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name Board Pin Raycus Pin
AOut0 or AOut2

Laser signal connector
12 or 14 22

GND 2 or 23 25
LaserA 22 BNC

135

APPENDIX K – Wiring between E1803 and DAVI D-Series RF
CO2 Laser

PLEASE NOTE: this wiring scheme is a non-binding policy, it may be incorrect due to changes in connected
hardware. So in every case please check this table against specification and wiring documentation of the used
laser!

Signal Name Board Pin DAVI RJ45 Pin DAVI RJ45
Wire Colour

LaserA / Frequency
Laser signal connector

22 1 orange/white
GND 2 or 23 8 brown

Laser Ready input, one of
DIn0…DIn7

Digital interface
connector

Pin 4, 6, 8, 10,
12, 14, 16 or 18

3 green/white

GND 2 6 green

136

APPENDIX L – XY2-100 / XY2-200 protocol description
Depending on the actual configuration, the data submitted at 26 pin or D-SUB25 connector of E1803D are
conform to XY2-100 specification:

CLK+

SYNC+

X+, Y+, Z+ Data

In standard 16 bit operating mode first three bits are set to 001, then 16 bit position data followed by a parity
bit (even parity) are transmitted:

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 D15..D0 position data Pe

In enhanced XY2-100E 18 bit operating mode first bit is set to 1, then 18 bit position data followed by a parity
bit (odd parity) are transmitted:

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 D17..D0 position data Po

To use this mode, the related tune-value has to be set in configuration file (please refer to section “6.5 microSD-
Card”)

In XY2-100 and XY2-100E mode one frame with 20 bits has a length of 10 usec which is similar to 100 kHz
output clock.
For the XY2-200 and XY2-200E modes a frame with 20 bits has a length of 5 usec which is similar to 200 kHz
output frequency.

137

APPENDIX M – XY3-100 protocol description
Depending on the actual configuration, the data submitted at 26 pin or D-SUB25 connector of E1803D are
conform to XY3-100 specification. For details about the XY3-100 protocol, please refer to information given
online at https://halaser.systems/compare.php#XY3

138

https://halaser.systems/compare.php#XY3

APPENDIX N – SL2-100 protocol description
For information about the SL2-100 scanner protocol, please refer to information given online at
https://halaser.systems/compare.php#XY3

139

https://halaser.systems/compare.php#XY3

APPENDIX O – RL3-100 protocol description
For information about the RL3-100 scanner protocol, please refer to information given online at
https://halaser.systems/compare.php#XY3

140

https://halaser.systems/compare.php#XY3

APPENDIX P – IDC connector pin numbering

Pin numbering of the IDC connectors (according to pinout-tables shown in hardware description sections
above) can be seen in below image:

The first pin is marked by a small arrow in connector. Second pin is below of it, counting continues column-wise.

141

APPENDIX P – Mechanical Dimensions
Mechanical dimensions, positions of connectors and holes of E1803D, all values are given in unit mm:

142

Mechanical dimensions and positions of connectors of E1803dock, all values are given in unit mm:

Mechanical dimensions, positions of mounting points and holes of E1803base, all values are given in unit mm:

143

Index
2
2D marking on-the-fly...33

8
8.3...36

A
ADC...18
adcfreq...18
Alive...17, 61
AOut0..16, 30, 63, 114
AOut1..16, 30, 63, 114
auto..37
autofile..20

B
barcode..37
barcodes..68
BeamConstruct..11, 36, 61
bitmap...99
bitmap lines..99
BNC..58
boot..26
busid...22, 62, 71

C
C45 rail...60
C45 rail adapter..60
C45 rail lock..60
cdepr..66
cdser..68
cdtl0...43, 70
cdtl1...43, 70
cecho..22, 62
cfror...63
cftim...69
cgana...64
cgbsr..63
cgbuf..68
cgcor..66
cgepr..66
cginp..62
cglog...71
cgmtx...63
cgser..68
cgsta...70
cgtim..69
cgtin...65
cgtxt...68
chalt...64
ciser..68
cjsor..20, 63
clepr...39, 66, 116
CLK..27f., 44f.
cmsor...20, 63
CNC...66
CO2...29, 57, 94
commands...62
configuration...18, 37, 41

144

continuous wave...56
continuously running frequency..95
control commands...62
correction table..19
corrtable...19, 66
corrtable0...19
cpuor...63
cpwor...20, 63
crrrr..70
crser...69
crtim..69
csbuf..67
cscnc...65, 79
cscor...19, 65
cslgt..71
cslmo...71
cslp8...71
csmtx..7, 64
csout..70
cspof..64
csser...68
cssta...70
cstat...65
cstdy..69
csthr...69
cstim..69
cstmi..69
cstmo...69
cstop..64
cstrt..65
cstsc...70
cstxt..37, 68
cstyr...69
cswaf..26, 64
ctlxy...67
ctrig..65
current..47
cvers..62
CW...55f.

D
DataMatrix...37, 68f., 119
DAVI D-Series RF CO2...136
digidebc..21
digiinit...21
digimask...21
Digital interface..12, 31
DIn..31
DIN rail...60
DIN/C45 rail adapter..60
DIN/C45 rail lock...60
Dot...42
dot marker...18, 41
dot marking..26
Dot Mode...42f., 70
dot peen...41
dotdist...41
dotfont0...41
dotfont1...41, 43
dotfont1y...41

145

dotmark..37, 41
dottime...42
DOut...31f., 114
DOut0...31, 114
DOut7...31, 114
Download new firmware..77
DYN_DATA_MAX_STRING_LENGTH..118f.

E
E1803_ana_read...90
E1803_ana_read()...108
E1803_ana_write...103
E1803_close...84
E1803_close()..84, 116
E1803_COMMAND_FLAG_ANA_AOUT0...106
E1803_COMMAND_FLAG_ANA_AOUT1...106
E1803_COMMAND_FLAG_ASYNC...107f.
E1803_COMMAND_FLAG_DIRECT..95, 102, 105, 107ff.
E1803_COMMAND_FLAG_DONOTWAIT..112
E1803_COMMAND_FLAG_FREQ_LASERA..106
E1803_COMMAND_FLAG_HEAD_STATE_RAW..100
E1803_COMMAND_FLAG_PASSIVE...104, 109
E1803_COMMAND_FLAG_PID_OUT_AOUT0...114
E1803_COMMAND_FLAG_PID_OUT_AOUT1...114
E1803_COMMAND_FLAG_PID_OUT_DOUT0...114
E1803_COMMAND_FLAG_PID_OUT_DOUT1...114
E1803_COMMAND_FLAG_PID_OUT_DOUT2...114
E1803_COMMAND_FLAG_PID_OUT_DOUT3...114
E1803_COMMAND_FLAG_PID_OUT_DOUT4...114
E1803_COMMAND_FLAG_PID_OUT_DOUT5...114
E1803_COMMAND_FLAG_PID_OUT_DOUT6...114
E1803_COMMAND_FLAG_PID_OUT_DOUT7...114
E1803_COMMAND_FLAG_PID_OUT_INVERT...114
E1803_COMMAND_FLAG_PID_OUT_POSITIVE..114
E1803_COMMAND_FLAG_SCANNER_VAR_POLYDELAY...93
E1803_COMMAND_FLAG_STREAM..95, 102f., 105, 107, 109, 112
E1803_COMMAND_FLAG_UART1..107f.
E1803_COMMAND_FLAG_XYCORR_FLIPXY...91
E1803_COMMAND_FLAG_XYCORR_MIRRORX...91
E1803_COMMAND_FLAG_XYCORR_MIRRORY...91
E1803_COMMAND_FLAG_ZCORR_MIRRORZ..92
E1803_CSTATE_FILE_WRITE_ERROR...88
E1803_CSTATE_HALTED...88
E1803_CSTATE_MARKING...83f., 87f.
E1803_CSTATE_MARKING|E1803_CSTATE_PROCESSING..87
E1803_CSTATE_PROCESSING..83f., 87f.
E1803_CSTATE_SAC_CTLXY..67, 88
E1803_CSTATE_SAC_MARKING..67, 88
E1803_CSTATE_SAC_READY...67, 88
E1803_CSTATE_WAIT_EXTTRIGGER..88
E1803_CSTATE_WAIT_INPUT...88
E1803_CSTATE_WAS_START_PRESSED...88
E1803_CSTATE_WAS_STOP_PRESSED...88
E1803_CSTATE_WRITING_DATA..78
E1803_CSTATE_WRITING_DATA_ERROR...78
E1803_delay...88
E1803_digi_pulse()..103
E1803_digi_read..104
E1803_digi_set_mip_output..106
E1803_digi_set_mip_output()..21

146

E1803_digi_set_motf_powerctl()..106
E1803_digi_set_motf()...106
E1803_digi_set_motf2...104
E1803_digi_set_motf2()..104
E1803_digi_set_wet_output...107
E1803_digi_set_wet_output()...21
E1803_digi_wait...104
E1803_digi_wait_motf...105
E1803_digi_wait_motf()..105
E1803_digi_write...103
E1803_dynamic_data2()..116f.
E1803_ERROR_FILENAME..120
E1803_ERROR_FILEOPEN...120
E1803_ERROR_FILEWRITE...120
E1803_ERROR_INVALID_CARD..120
E1803_ERROR_INVALID_DATA...120
E1803_ERROR_NO_CONNECTION..120
E1803_ERROR_NO_MEMORY...120
E1803_ERROR_TRANSMISSION..120
E1803_ERROR_UNKNOWN_BOARD...120
E1803_ERROR_UNKNOWN_FW..120
E1803_execute..83, 85
E1803_execute()...83, 86
E1803_ext_digi_write()...108
E1803_FILEMODE_LOCAL..116f.
E1803_FILEMODE_SEND..116f.
E1803_get_card_state()...86
E1803_get_card_state2...87
E1803_get_card_state2()..83f.
E1803_get_free_space...88
E1803_get_head_state..100
E1803_get_library_version..89
E1803_get_pos()...97
E1803_get_serial_number()...89
E1803_get_startstop_state..87
E1803_get_sync()...85
E1803_get_version..89
E1803_halt_execution..86
E1803_halt_execution()...88
E1803_jump_abs..96
E1803_jump_abs()...83, 105
E1803_LASERMODE_CO2...94
E1803_LASERMODE_CRF..95
E1803_LASERMODE_DFREQ...95
E1803_LASERMODE_MOPA..81, 95
E1803_LASERMODE_YAG..81
E1803_LASERMODE_YAG1...94
E1803_LASERMODE_YAG2...94
E1803_LASERMODE_YAG3...95
E1803_load_correction...90
E1803_load_correction()..83, 117
E1803_lp8_write...102
E1803_lp8_write_latch...102
E1803_lp8_write_mo...102
E1803_lp8_write_mo2()...102
E1803_mark_abs..96
E1803_mark_abs()...83, 105
E1803_mark_pixelline..99
E1803_motion_get_pos()..113
E1803_motion_move_abs_async()...112

147

E1803_motion_move_abs()...111f.
E1803_motion_move_rel()..111f.
E1803_motion_reference()...113
E1803_MOTION_REFSTEP_INV_SWITCH..113
E1803_MOTION_REFSTEP_N...113
E1803_MOTION_REFSTEP_P...113
E1803_motion_set_accel()...110
E1803_motion_set_limits()..110
E1803_motion_set_pos()..113
E1803_motion_set_pulsewidth()..110
E1803_motion_set_speed()...110
E1803_motion_stop()..112
E1803_motion_stream_wait()..111f.
E1803_pid_set()...115
E1803_PIXELMODE_GATE_POWER_CONTROL...98
E1803_PIXELMODE_HW_POWER_CONTROL..98
E1803_PIXELMODE_JUMP_LEAVE_POWER...98
E1803_PIXELMODE_JUMP_N_SHOOT..98
E1803_PIXELMODE_NO_JUMPS..98
E1803_release_trigger_point..83, 86f.
E1803_release_trigger_point()..105
E1803_SCANNERMODE_SL..94
E1803_SCANNERMODE_XY2_100..93
E1803_SCANNERMODE_XY2_100E..94
E1803_SCANNERMODE_XY2_200..93
E1803_SCANNERMODE_XY2_200E..94
E1803_set_connection..84
E1803_set_connection()...83, 116f.
E1803_set_debug_logfile..85
E1803_set_filepath()..116
E1803_set_fpk...94, 101
E1803_set_laser...95
E1803_set_laser_delays..92
E1803_set_laser_mode..94
E1803_set_laser_timing..100
E1803_set_laserb...95, 101
E1803_set_matrix..99
E1803_set_matrix()...91
E1803_set_password..84
E1803_set_pixelmode..98
E1803_set_pos..97
E1803_set_scanner_delays..93
E1803_set_scanner_mode()...93
E1803_set_speeds...92
E1803_set_standby...95, 101
E1803_set_standby2()...101
E1803_set_sync()...85
E1803_set_trigger_point...83, 86
E1803_set_trigger_point()...105
E1803_set_wobble..96
E1803_set_xy_correction...91
E1803_set_xy_correction()...91, 99
E1803_set_z_correction2...91
E1803_set_z_correction2()..91
E1803_stop_execution...86
E1803_stop_execution()...7, 86
E1803_switch_correction...91
E1803_uart_read...108
E1803_uart_write...107
E1803_write..115

148

E1803base...143
E1803dock...143
electrostatic sensitive device..9
encoder..33
EPR...36, 66
Error...17, 61
ESD...9
eth...26
Ethernet...11ff., 19, 26, 62, 84
extension connector...35
ExtStart..30, 42f., 65, 67, 70, 86, 107
ExtStop...30, 42, 65, 70

F
fiber..29
fiber laser..30, 126f.
fiber-laser..95
file extension..36
filename..36
firmware..18, 27, 89
font...36
fonts...18, 41
FPK...58, 94

G
G-Code...65f.
G0...81f.
G1...81f.
G70..81f.
G71..81f.
galvos...27, 45
gateway..25, 69
GNDext...31, 34
gw0...25

H
HALdrive...52, 54, 56, 59f.
haltedloop..20, 37, 40
haltedlooptimeout...20, 38
homing..47, 113

I
idxselect..20, 39, 66f.
in-polygon delay...93
Intelli-IO Extension Board...46, 108
iobuff..20, 39, 67
iohaltedloop..20, 38ff., 66
iolatch..19, 39
ioselect..20, 36, 38f., 66f.
iothres...20
IP..12f., 19, 84
ip0...19
IPG..29, 50, 126
IPG YLM...50, 52, 131
IPG YLP..50, 127ff.
IPG YLR...130

J
JPT..50
JPT YDFLP..50, 127
jump...96
jump delay..93, 96

149

jump speed..96
jumpspeed...92

L
laser off delay...93, 96
laser on delay..93, 97
Laser signals..12, 29
LaserA...30, 94
LaserB..30, 94
lasergate..18, 21, 30, 64, 116
lasers...29
Latch..30, 116
LED...16
libslrtc4.so..121
Linux..14
loop..37
LP8..24, 30

M
M2..65
M704...80
M705...81
M707...82
M709..80f.
M715...81
M718...81
main oscillator..18, 24, 30
mark...97
mark delay...93, 97
mark speed...97
Marking Active..17
marking data..71
marking in progress..106
Marking On-The-Fly...32f.
markspeed..92
matrix laser...26, 41
matrix marking..41
matrix printing..41
MaxPhotonics...50, 132
MaxPhotonics MFP..50, 132
MFP...50
microSD...12, 18, 36, 61
microUSB..15
mipout...21
MO..24, 30, 115
MOPA...50, 127
motion...47
Multi-IO Extension Board..46

N
netmask..26, 69
nm0..26
NX-02..48
NX-02 Extension Board...48

O
open collector..32
opto-insulated...31

P
passwd..19
pethd...26

150

pixel line...98
polydelay...93
position encoder...32
power driver...47
Power supply...12, 15, 27ff.
PRO license...11, 15
programming interface..83
PWM..58, 94

Q
Q-Switch..94
QR...37, 68f.
Quick Start..61

R
Raycus...50, 134
Raycus RFL-PMX..50
Raycus RFL-PQB...50
Raycus RFL-QCW...50, 52
reboot...70
Reference..47
referencing...113
RFL-PMX..50
RFL-PQB..50
RJ45...12
RL3-100..140
rotation..99
RS232...21f., 35, 44f., 52
RS485..21f., 35, 44f.
RTC4...120f.
RTC4DLL.dll..121
RX0...35
RX0-...35
RX0+..35
RX1...44
RX1-...44
RX1+..44

S
sc_optic.dll..124
scaling...99
scanhead...16, 27ff., 45, 100
scanner movement..92
Scanner Signals..12, 27
scanner speed..92
SCI...124
serial interface..12, 21f., 35, 84
serial number...68
SL Extension Board...94
SL2-100...139
SNTP..69
SNTP time server...25
sntp0..25
sntp0offset...25
SPI...29, 54, 133
stand-alone..36, 41, 64
standalone..19, 37, 41
STATUS..27f., 100
step/direction..47
stepper...47
stepper motor..47

151

SYNC...27f., 44f.

T
T1..81
Telnet...62
time..69
tune..23, 43
tunemarkout...23, 40
tunereadyout..22, 39
tunexy3..25
turn on laser...67
TX0...35
TX0-...35
TX0+..35
TX1...44
TX1-...44
TX1+..44
Type B...126
Type D..127
Type E...128
Type G..129

U
u0bits..21
u0brate...21
u0bypass...22, 62, 71
u0parity..21
u0stop...22
u1bits..22
u1brate...22
u1parity..22
UART0..35
UART1..44f.
usb..11f., 15, 26, 61, 84
USC1...124
USC2...124
User LED..12

V
Vext...31, 34
Vext)...34

W
waiting for external trigger...107
waveform...30
wetout..21
Windows...13f.

X
X..27f., 44f.
XY2-100..93, 100, 137
XY2-100E..94, 137
XY2-200..93, 137
XY2-200E..94
XY3-100..28, 138

Y
Y..27f., 44f.
YAG...29, 57, 94
YDFLP...50
YLM..52
YLP...50

152

Z
Z..27f.

 Extension Board...109

.

.bco...90

.bco,..19

.crt...19, 90

.ct5..19, 90

.ctb..19, 90

.fcr...90

.gcd..19, 90

.txt...19, 90

.ucf...19, 90

.xml...19, 90

153

